79 research outputs found

    Determination of Sapphire Off‐Cut and Its Influence on the Morphology and Local Defect Distribution in Epitaxially Laterally Overgrown AlN for Optically Pumped UVC Lasers

    Get PDF
    Herein, a systematic study of the morphology and local defect distribution in epitaxially laterally overgrown (ELO) AlN on c‐plane sapphire substrates with different off‐cut angles ranging from 0.08° to 0.23° is presented. Precise measurements of the off‐cut angle α, using a combination of optical alignment and X‐ray diffraction with an accuracy of ±5° for the off‐cut direction and ±0.015° for the off‐cut angle, are carried out. For ELO AlN growth, a transition from step flow growth at α  0.14° is observed. Furthermore, the terraces of the step‐bunched surface exhibit curved steps. An analysis of the local defect distribution by scanning transmission electron microscopy and a comparison with atomic force microscopy reveal a bunching of defects in line with the ELO pattern and a roughening of step edges in highly defective regions. In addition, a reduction in the threshold excitation power density for optically pumped ultraviolet‐C (UVC) lasers with smooth surface morphologies is observed.TU Berlin, Open-Access-Mittel - 201

    Athermalization of the Lasing Wavelength in Vertical-Cavity Surface-Emitting Lasers

    Get PDF
    A concept for vertical-cavity surface-emitting lasers (VCSELs) is proposed and demonstrated to obtain a lasing wavelength with unprecedented temperature stability. The concept is based on incorporating a dielectric material with a negative thermo-optic coefficient, dn/dT, in the distributed Bragg reflectors (DBRs) to compensate the positive dn/dT of the semiconductor cavity. In a short cavity, the optical field has a significant overlap with the DBRs, and the redshift of the lasing wavelength caused by the semiconductor cavity can be compensated by the negative dn/dT of the DBRs. Here, proof of this concept is presented for optically-pumped VCSELs emitting at 310 nm, demonstrating a lasing wavelength that even blueshifts by less than 0.1\ua0nm over an 80 \ub0C range with a maximum slope of –3.4\ua0pm K−1. This is to be compared with a redshift of 1–1.5\ua0nm over the same temperature range reported for III-nitride blue-emitting VCSELs. Furthermore, this method can also be implemented in VCSELs with longer cavity lengths by including a dielectric layer between the semiconductor and the DBR. The approach used here to obtain a temperature-stable lasing wavelength is generic and can therefore be applied to VCSELs in all material systems and lasing\ua0wavelengths

    Thin-film flip-chip UVB LEDs realized by electrochemical etching

    Get PDF
    We demonstrate a thin-film flip-chip (TFFC) light-emitting diode (LED) emitting in the ultraviolet B (UVB) at 311 nm, where substrate removal has been achieved by electrochemical etching of a sacrificial Al0.37Ga0.63N layer. The electroluminescence spectrum of the TFFC LED corresponds well to the as-grown LED structure, showing no sign of degradation of structural and optical properties by electrochemical etching. This is achieved by a proper epitaxial design of the sacrificial layer and the etch stop layers in relation to the LED structure and the electrochemical etch conditions. Enabling a TFFC UV LED is an important step toward improving the light extraction efficiency that limits the power conversion efficiency in AlGaN-based LEDs

    Increased Light Extraction of Thin-Film Flip-Chip UVB LEDs by Surface Texturing

    Get PDF
    Ultraviolet light-emitting diodes (LEDs) suffer from a low wall-plug efficiency, which is to a large extent limited by the poor light extraction efficiency (LEE). A thin-film flip-chip (TFFC) design with a roughened N-polar AlGaN surface can substantially improve this. We here demonstrate an enabling technology to realize TFFC LEDs emitting in the UVB range (280-320 nm), which includes standard LED processing in combination with electrochemical etching to remove the substrate. The integration of the electrochemical etching is achieved by epitaxial sacrificial and etch block layers in combination with encapsulation of the LED. The LEE was enhanced by around 25% when the N-polar AlGaN side of the TFFC LEDs was chemically roughened, reaching an external quantum efficiency of 2.25%. By further optimizing the surface structure, our ray-tracing simulations predict a higher LEE from the TFFC LEDs than flip-chip LEDs and a resulting higher wall-plug efficiency

    Spatial clustering of defect luminescence centers in Si-doped low resistivity Al0.82Ga0.18N

    Get PDF
    A series of Si-doped AlN-rich AlGaN layers with low resistivities was characterized by a combination of nanoscale imaging techniques. Utilizing the capability of scanning electron microscopy to reliably investigate the same sample area with different techniques, it was possible to determine the effect of doping concentration, defect distribution, and morphology on the luminescence properties of these layers. Cathodoluminescence shows that the dominant defect luminescence depends on the Si-doping concentration. For lower doped samples, the most intense peak was centered between 3.36 eV and 3.39 eV, while an additional, stronger peak appears at 3 eV for the highest doped sample. These peaks were attributed to the (VIII-ON)2− complex and the V3−III vacancy, respectively. Multimode imaging using cathodoluminescence, secondary electrons, electron channeling contrast, and atomic force microscopy demonstrates that the luminescence intensity of these peaks is not homogeneously distributed but shows a strong dependence on the topography and on the distribution of screw dislocations.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeBMBF, 13N12587, Photonische Plattformtechnologie zur ultrasensitiven und hochspezifischen biochemischen Sensorik auf Basis neuartiger UV-LEDs (UltraSens

    Effect of Inhomogeneous Broadening in Ultraviolet III-Nitride Light-Emitting Diodes

    Get PDF
    In the past years, light-emitting diodes (LED) made of GaN and its related ternary compounds with indium and aluminium have become an enabling technology in all areas of lighting. Visible LEDs have yet matured, but research on deep ultraviolet (UV) LEDs is still in progress. The polarisation in the anisotropic wurtzite lattice and the low free hole density in p-doped III-nitride compounds with high aluminium content make the design for high efficiency a critical step. The growth kinetics of the rather thin active quantum wells in III-nitride LEDs makes them prone to inhomogeneous broadening (IHB). Physical modelling of the active region of III-nitride LEDs supports the optimisation by revealing the opaque active region physics. In this work, we analyse the impact of the IHB on the luminescence and carrier transport III-nitride LEDs with multi-quantum well (MQW) active regions by numerical simulations comparing them to experimental results. The IHB is modelled with a statistical model that enables efficient and deterministic simulations. We analyse how the lumped electronic characteristics including the quantum efficiency and the diode ideality factor are related to the IHB and discuss how they can be used in the optimisation process

    Influence of light absorption on the performance characteristics of UV LEDs with emission between 239 and 217 nm

    Get PDF
    The development of ultraviolet AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) in the wavelength range between 239 and 217 nm is presented. The effects of aluminum composition in the MQW active region and of the underlying AlxGa1−xN:Si current spreading layer on the emission characteristics and operating voltages are investigated. A strong reduction in output power is observed with decreasing emission wavelength which is partly attributed to light absorption within the underlying AlxGa1−xN:Si. Additionally, a reduced carrier injection efficiency is identified as the root cause for the reduced emission power with decreasing emission wavelength. Emission powers at a dc current of 20 mA between 310 and 0.15 ΌW have been achieved for LEDs emitting between 239 and 217 nm. The maximum light output in pulsed mode operation of these LEDs ranged between 4.6 mW and 3.6 ΌW, respectively.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Low-Threshold AlGaN-based UVB VCSELs enabled by post-growth cavity detuning

    Get PDF
    The performance of vertical-cavity surface-emitting lasers (VCSELs) is strongly dependent on the spectral detuning between the gain peak and the resonance wavelength. Here, we use angle-resolved photoluminescence spectroscopy to investigate the emission properties of AlGaN-based VCSELs emitting in the ultraviolet-B spectral range with different detuning between the photoluminescence peak of the quantum-wells and the resonance wavelength. Accurate setting of the cavity length, and thereby the resonance wavelength, is accomplished by using doping-selective electrochemical etching of AlGaN sacrificial layers for substrate removal combined with deposition of dielectric spacer layers. By matching the resonance wavelength to the quantum-wells photoluminescence peak, a threshold power density of 0.4 MW/cm2 was achieved, and this was possible only for smooth etched surfaces with a root mean square roughness below 2 nm. These results demonstrate the importance of accurate cavity length control and surface smoothness to achieve low-Threshold AlGaN-based ultraviolet VCSELs

    Indium incorporation in quaternary Inx Aly Ga1-x-y N for UVB-LEDs

    Get PDF
    Consistent studies of the quaternary composition are rare as it is impossible to fully determine the quaternary composition by X-ray diffraction or deduce it from that of ternary alloys. In this paper we determined the quaternary composition by wavelength dispersive X-ray spectroscopy of Inx Aly layers grown by metal organic vapor phase epitaxy. Further insights explaining the peculiarities of Inx Aly Ga1-x-yN growth in a showerhead reactor were gained by simulations of the precursor decomposition, gas phase adduct formation and indium incorporation including desorption. The measurements and simulations agree very well showing that the indium incorporation in a range from 0% to 2% is limited by desorption which is enhanced by the compressive strain to the relaxed Al0.5Ga0.5N buffer layer as well as indium incorporation into AlN particles forming in the gas phase. Utilizing Inx Aly Ga1-x-yN layers containing 2% of indium for multiple quantum wells (MQWs), it was possible to show an almost five times higher photoluminescence intensity of InAlGaN MQWs in comparison to AlGaN MQWs

    A 310 nm Optically Pumped AlGaN Vertical-Cavity Surface-Emitting Laser

    Get PDF
    Ultraviolet light is essential for disinfection, fluorescence excitation, curing, and medical treatment. An ultraviolet light source with the small footprint and excellent optical characteristics of vertical-cavity surface-emitting lasers (VCSELs) may enable new applications in all these areas. Until now, there have only been a few demonstrations of ultraviolet-emitting VCSELs, mainly optically pumped, and all with low Al-content AlGaN cavities and emission near the bandgap of GaN (360 nm). Here, we demonstrate an optically pumped VCSEL emitting in the UVB spectrum (280-320 nm) at room temperature, having an Al0.60Ga0.40N cavity between two dielectric distributed Bragg reflectors. The double dielectric distributed Bragg reflector design was realized by substrate removal using electrochemical etching. Our method is further extendable to even shorter wavelengths, which would establish a technology that enables VCSEL emission from UVA (320-400 nm) to UVC (<280 nm)
    • 

    corecore