7,979 research outputs found

    Controlled oxide removal for the preparation of damage-free InAs(110) surfaces

    Get PDF
    Controlled oxide removal from InAs(110) surfaces using atomic hydrogen (H*) has been achieved by monitoring the contaminant vibrational modes with high resolution electron energy loss spectroscopy (HREELS). The contributing oxide vibrational modes of the partially H* cleaned surface have been identified. Following hydrocarbon desorption during preliminary annealing at 360 °C, exposure to atomic hydrogen at 400 °C initially removes the arsenic oxides and indium suboxides; complete indium oxide removal requires significantly higher hydrogen doses. After a total molecular hydrogen dose of 120 kL, a clean, ordered surface, exhibiting a sharp (1×1) pattern, was confirmed by low energy electron diffraction and x-ray photoelectron spectroscopy. Energy dependent HREELS studies of the near-surface electronic structure indicate that no residual electronic damage or dopant passivation results from the cleaning process

    The 3.4 micron emission in comets

    Get PDF
    Emission features near 3.4 microns were detected in comet Bradfield (1987s) on 17 Nov. 1987 UT, and, marginally, on two earlier dates, with the Cooled Grating Array Spectrometer at the NASA Infrared Radio Telescope Facility (IRTF) (Brooke et al., 1988b). The central wavelength (3.36 microns) and width (approx. 0.15 microns) of the strongest feature coincide with those observed in comet Halley. A weaker emission feature at 3.52 microns and a strong feature extending shortward of 2.9 microns were also detected. This brings the number of comets in which these three features have been seen to three, two new (Bradfield, Wilson) and one old (Halley). It seems almost certain that the 3.4 micron features are emissions by C-H groups in complex molecules. Based on the similarity of the 3.4 micron features in comets Halley and Wilson, the authors suggest that a particular set of organic compounds may be common to all comets (Brooke et al. 1988a). The absence of the feature in some comets could then be due to photodestruction or evaporation of the organics when the comet approaches the sun, in combination with a predominance of thermal emission from non C-H emitting grains. Detection of the 3.4 micron emission feature in comet Bradfield at 4 = 0.9 AU provides support for this argument. Complex organics in comets could have been formed by particle irradiation of parent ices in the nucleus or been incorporated as grains at the time the comets formed. Since the most heavily irradiated layers of Halley would have been lost in its hundreds of perihelion passages, the authors believe the more likely explanation is that the 3.4 micron emitting material was incorporated in comet nuclei at the time of formation. The 3.4 micron comet feature resembles, but is not identical to, the interstellar 3.29 micron (and longer wavelength) emission features and the broad 3.4 micron feature seen in absorption toward the Galactic center. Detailed comparisons of cometary and interstellar organics will require comet spectra with signal-to-noise and spectral resolution comparable to that available in spectra of the interstellar medium. Such observations are currently being planned

    A unified framework for Schelling's model of segregation

    Full text link
    Schelling's model of segregation is one of the first and most influential models in the field of social simulation. There are many variations of the model which have been proposed and simulated over the last forty years, though the present state of the literature on the subject is somewhat fragmented and lacking comprehensive analytical treatments. In this article a unified mathematical framework for Schelling's model and its many variants is developed. This methodology is useful in two regards: firstly, it provides a tool with which to understand the differences observed between models; secondly, phenomena which appear in several model variations may be understood in more depth through analytic studies of simpler versions.Comment: 21 pages, 3 figure

    Accumulation layer profiles at InAs polar surfaces

    Get PDF
    High resolution electron energy loss spectroscopy, dielectric theory simulations, and charge profile calculations have been used to study the accumulation layer and surface plasmon excitations at the In-terminated (001)-(4 × 1) and (111)A-(2 × 2) surfaces of InAs. For the (001) surface, the surface state density is 4.0 ± 2.0 × 1011 cm – 2, while for the (111)A surface it is 7.5 ± 2.0 × 1011 cm – 2, these values being independent of the surface preparation procedure, bulk doping level, and substrate temperature. Changes of the bulk Fermi level with temperature and bulk doping level do, however, alter the position of the surface Fermi level. Ion bombardment and annealing of the surface affect the accumulation layer only through changes in the effective bulk doping level and the bulk momentum scattering rate, with no discernible changes in the surface charge density

    Buyer Market Power in UK Food Retailing

    Get PDF
    The potential existence of buyer market power in UK food retailing has attracted the scrutiny of the UK's anti-trust authorities, culminating in the decision to launch the second of two comprehensive regulatory inquiries in recent years. Throughout, detection of buyer power has been dogged by the paucity of reliable evidence of its existence. In this paper we present a simple theoretical model of oligopsony which delivers quasireduced form retailer-producer pricing equations in which the presence of market power can be detected using readily available market data. Using a cointegrated vector autoregression, we find empirical results that are consistent with the presence of oligopsony power in all six food products investigated.Buyer power, Cointegrated VARs, UK food industry, Agribusiness, Consumer/Household Economics,

    Travel, Meal, & Entertainment Expense Deductions in U.S. Tax Court Cases

    Get PDF
    Henry T. Petersen, is a C.P.A. with Strickland and Jones, P.C., Norfolk, Virginia 23510-1517. Tim C. McKee, M.B.A., J.D., LL.M., C.P.A., is the University Professor of Accounting, Department of Accounting, Old Dominion University, Norfolk, Virginia 23529-0229

    The Athletic Profile of Fast Bowling in Cricket : A Review

    Get PDF
    Cricket is a global sport played in over 100 countries with elite performers attracting multimillion dollar contracts. Therefore, performers maintaining optimum physical fitness and remaining injury free is important. Fast bowlers have a vital position in a cricket team, and there is an increasing body of scientific literature that has reviewed this role over the past decade. Previous research on fast bowlers has tended to focus on biomechanical analysis and injury prevention in performers. However, this review aims to critically analyze the emerging contribution of physiological-based literature linked to fast bowling in cricket, highlight the current evidence related to simulated and competitive in-match performance, and relate this practically to the conditioning coach. Furthermore, the review considers limitations with past research and possible avenues for future investigation. It is clear with the advent of new applied mobile monitoring technology that there is scope for more ecologically valid and longitudinal exploration capturing in-match data, providing quantification of physiological workloads, and analysis of the physical demands across the differing formats of the game. Currently, strength and conditioning specialists do not have a critical academic resource with which to shape professional practice, and this review aims to provide a starting point for evidence in the specific areaPeer reviewedFinal Accepted Versio

    Market Power in UK Food Retailing: Theory and Evidence from Seven Product Groups

    Get PDF
    Establishing the presence of market power in food chains has become an increasingly pertinent line of enquiry given the trend towards increasing concentration that has been observed in many parts of the world. This paper presents a theoretical model of price transmission in vertically related markets under imperfect competition. The model delivers a quasi-reduced form representation that is empirically tractable using readily available market data to test for the presence of market power. In particular, we show that the hypothesis of perfect competition can be rejected if shocks to the demand and supply function are significant and correctly signed in price transmission equations. Using a cointegrated vector autoregression, we find empirical results that are consistent with downstream market power in six out of seven food products investigated, supporting both the findings of the UK competition authority's recent investigation in to supermarkets and renewed calls for further scrutiny of supermarket behaviour by the UK's Office of Trading.imperfect competition, Cointegrated VARs, UK food industry, Marketing, D4, L81,

    Stochastic thermodynamics of chemical reaction networks

    Full text link
    For chemical reaction networks described by a master equation, we define energy and entropy on a stochastic trajectory and develop a consistent nonequilibrium thermodynamic description along a single stochastic trajectory of reaction events. A first-law like energy balance relates internal energy, applied (chemical) work and dissipated heat for every single reaction. Entropy production along a single trajectory involves a sum over changes in the entropy of the network itself and the entropy of the medium. The latter is given by the exchanged heat identified through the first law. Total entropy production is constrained by an integral fluctuation theorem for networks arbitrarily driven by time-dependent rates and a detailed fluctuation theorem for networks in the steady state. Further exact relations like a generalized Jarzynski relation and a generalized Clausius inequality are discussed. We illustrate these results for a three-species cyclic reaction network which exhibits nonequilibrium steady states as well as transitions between different steady states.Comment: 14 pages, 2 figures, accepted for publication in J. Chem. Phy

    Bandwidth renormalization due to the intersite Coulomb interaction

    Full text link
    The theory of correlated electrons is currently moving beyond the paradigmatic Hubbard UU, towards the investigation of intersite Coulomb interactions. Recent investigations have revealed that these interactions are relevant for the quantitative description of realistic materials. Physically, intersite interactions are responsible for two rather different effects: screening and bandwidth renormalization. We use a variational principle to disentangle the roles of these two processes and study how appropriate the recently proposed Fock treatment of intersite interactions is in correlated systems. The magnitude of this effect in graphene is calculated based on cRPA values of the intersite interaction. We also observe that the most interesting charge fluctuation phenomena actually occur at elevated temperatures, substantially higher than studied in previous investigations.Comment: New appendix on benzen
    • 

    corecore