52 research outputs found

    Can one identify non-equilibrium in a three-state system by analyzing two-state trajectories?

    Full text link
    For a three-state Markov system in a stationary state, we discuss whether, on the basis of data obtained from effective two-state (or on-off) trajectories, it is possible to discriminate between an equilibrium state and a non-equilibrium steady state. By calculating the full phase diagram we identify a large region where such data will be consistent only with non-equilibrium conditions. This regime is considerably larger than the region with oscillatory relaxation, which has previously been identified as a sufficient criterion for non-equilibrium.Comment: 4 pages, 2 figures, J. Chem. Phys. (2010) (in press

    A Phosphine‐ß‐diketiminate Nickel(I)‐Complex for Small Molecule Activation

    Get PDF
    A bis(diphenyl)-phosphine functionalized ß-diketimine ligand (PNac-H) was applied for the synthesis of a subvalent Ni(I) complex [PNac-Ni]. Here, the Ni(I) center is stabilized by a tetradentate PNNP-type pocket, forming a square planar coordination sphere. Subsequently, the Ni(I) complex was investigated with regard to its reactivity and the activation of small molecules. The reductive potential of Ni(I) enabled an activation of different substrate classes, such as CH2_2X2_2 (X=Br, I), I2_2 or Ph2_2E2_2 (E=S, Se). The ligand\u27s design allows a stabilization of the reactive Ni(I) species while at the same time enabling activation processes due to a hemilabile coordination behavior and accessible axial coordination sites. The activation products have been characterized by single crystal X-ray diffraction, NMR and IR spectroscopy as well as elemental analysis

    Molecular gold strings: aurophilicity, luminescence and structure–property correlations

    Get PDF
    This review covers the compound class of one-dimensional gold strings. These compounds feature a formally infinite repetition of gold complexes as monomers/repeating units that are held together by aurophilic interactions, i.e. direct gold–gold contacts. Their molecular structures are primarily determined in the solid state using single crystal X-ray diffraction. The chemical composition of the employed gold complexes is diverse and furthermore plays a key role in terms of structure characteristics and the resulting properties. One of the most common features of gold strings is their photoluminescence upon UV excitation. The emission energy is often dependent on the distance of adjacent gold ions and the electronic structure of the whole string. In terms of gold strings, these parameters can be fine-tuned by external stimuli such as solvent, pH value, pressure or mechanical stress. This leads to direct structure–property correlations, not only with regard to the photophysical properties, but also electric conductivity for potential application in nanoelectronics. Concerning these correlations, gold strings, consisting of self-assembled individual complexes as building blocks, are the ideal compound class to look at, as perturbations by an inhomogeneity in the ligand sphere (such as the end of a molecule) can be neglected. Therefore, the aim of this review is to shed light on the past achievements and current developments in this area

    Tetra- And hexanuclear string complexes of the coinage metals

    Get PDF
    Reaction of the PNNP ligand system N,Nâ€Č-bis[(2-diphenylphosphino)phenyl]formamidinate (dpfam) featuring different coordination compartments with [AuCl(tht)], [CuMes]5_{5}, [AgMes]4_{4}, or [AuC6_{6}F5_{5}(tht)] (tht = tetrahydrothiophene) resulted in tetranuclear homo- and heterometallic coinage metal complexes, as well as a hexanuclear gold complex. All of them feature a metal string conformation. Photophysical investigation revealed a significant dependence of the photoluminescence properties on the metal composition. Below 100 K, the PL efficiency of three compounds approaches nearly 100%

    Efficient Blue Phosphorescence in Gold(I)‐Acetylide Functionalized Coinage Metal Bis(amidinate) Complexes

    Get PDF
    The synthesis of linear symmetric ethynyl‐ and acetylide‐amidinates of the coinage metals is presented. Starting with the desilylation of the complexes [{Me3_{3}SiC≡CC(NDipp)2_{2}}2_{2}M2_{2}] (Dipp=2,6‐diisopropylphenyl) (M=Cu, Au) it is demonstrated that this compound class is suitable to serve as a versatile metalloligand. Deprotonation with n‐butyllithium and subsequent salt metathesis reactions yield symmetric tetranuclear gold(I) acetylide complexes of the form [{(PPh3_{3})AuC≡CC(NDipp)2_{2}}2_{2}M2_{2}] (M=Cu, Au). The corresponding Ag complex [{(PPh3_{3})AuC≡CC(NDipp)2_{2}}2_{2}Ag2_{2}] was obtained by a different route via metal rearrangement. All compounds show bright blue or blue‐green microsecond long phosphorescence in the solid state, hence their photophysical properties were thoroughly investigated in a temperature range of 20–295 K. Emission quantum yields of up to 41 % at room temperature were determined. Furthermore, similar emissions with quantum yields of 15 % were observed for the two most brightly luminescent complexes in thf solution

    Entropy production for mechanically or chemically driven biomolecules

    Full text link
    Entropy production along a single stochastic trajectory of a biomolecule is discussed for two different sources of non-equilibrium. For a molecule manipulated mechanically by an AFM or an optical tweezer, entropy production (or annihilation) occurs in the molecular conformation proper or in the surrounding medium. Within a Langevin dynamics, a unique identification of these two contributions is possible. The total entropy change obeys an integral fluctuation theorem and a class of further exact relations, which we prove for arbitrarily coupled slow degrees of freedom including hydrodynamic interactions. These theoretical results can therefore also be applied to driven colloidal systems. For transitions between different internal conformations of a biomolecule involving unbalanced chemical reactions, we provide a thermodynamically consistent formulation and identify again the two sources of entropy production, which obey similar exact relations. We clarify the particular role degenerate states have in such a description

    The Democratic Biopolitics of PrEP

    Get PDF
    PrEP (Pre-Exposure Prophylaxis) is a relatively new drug-based HIV prevention technique and an important means to lower the HIV risk of gay men who are especially vulnerable to HIV. From the perspective of biopolitics, PrEP inscribes itself in a larger trend of medicalization and the rise of pharmapower. This article reconstructs and evaluates contemporary literature on biopolitical theory as it applies to PrEP, by bringing it in a dialogue with a mapping of the political debate on PrEP. As PrEP changes sexual norms and subjectification, for example condom use and its meaning for gay subjectivity, it is highly contested. The article shows that the debate on PrEP can be best described with the concepts ‘sexual-somatic ethics’ and ‘democratic biopolitics’, which I develop based on the biopolitical approach of Nikolas Rose and Paul Rabinow. In contrast, interpretations of PrEP which are following governmentality studies or Italian Theory amount to either farfetched or trivial positions on PrEP, when seen in light of the political debate. Furthermore, the article is a contribution to the scholarship on gay subjectivity, highlighting how homophobia and homonormativity haunts gay sex even in liberal environments, and how PrEP can serve as an entry point for the destigmatization of gay sexuality and transformation of gay subjectivity. ‘Biopolitical democratization’ entails making explicit how medical technology and health care relates to sexual subjectification and ethics, to strengthen the voice of (potential) PrEP users in health politics, and to renegotiate the profit and power of Big Pharma

    Identification of FOXP1 Deletions in Three Unrelated Patients with Mental Retardation and Significant Speech and Language Deficits

    Get PDF
    Mental retardation affects 2-3% of the population and shows a high heritability. Neurodevelopmental disorders that include pronounced impairment in language and speech skills occur less frequently. For most cases, the molecular basis of mental retardation with or without speech and language disorder is unknown due to the heterogeneity of underlying genetic factors. We have used molecular karyotyping on 1523 patients with mental retardation to detect copy number variations (CNVs) including deletions or duplications. These studies revealed three heterozygous overlapping deletions solely affecting the forkhead box P1 (FOXP1) gene. All three patients had moderate mental retardation and significant language and speech deficits. Since our results are consistent with a de novo occurrence of these deletions, we considered them as causal although we detected a single large deletion including FOXP1 and additional genes in 4104 ancestrally matched controls. These findings are of interest with regard to the structural and functional relationship between FOXP1 and FOXP2. Mutations in FOXP2 have been previously related to monogenic cases of developmental verbal dyspraxia. Both FOXP1 and FOXP2 are expressed in songbird and human brain regions that are important for the developmental processes that culminate in speech and language. ©2010 Wiley-Liss, Inc
    • 

    corecore