40 research outputs found
Detection of a Nearby Halo Debris Stream in the WISE and 2MASS Surveys
Combining the Wide-Field Infrared Survey Explorer All-Sky Release with the Two Micron All Sky Survey Point Source Catalog, we detect a nearby, moderately metal-poor stellar debris stream spanning 24° across the southern sky. The stream, which we designate Alpheus, is at an estimated distance of ~1.9 kpc. Its position, orientation, width, estimated metallicity, and, to some extent, its distance, are in approximate agreement with what one might expect of the leading tidal tail of the southern globular cluster NGC 288
The Calibration and Data Products of the Galaxy Evolution Explorer
We describe the calibration status and data products pertaining to the GR2
and GR3 data releases of the Galaxy Evolution Explorer (GALEX). These releases
have identical pipeline calibrations that are significantly improved over the
GR1 data release. GALEX continues to survey the sky in the Far Ultraviolet
(FUV, ~154 nm) and Near Ultraviolet (NUV, ~232 nm) bands, providing
simultaneous imaging with a pair of photon counting, microchannel plate, delay
line readout detectors. These 1.25 degree field-of-view detectors are
well-suited to ultraviolet observations because of their excellent red
rejection and negligible background. A dithered mode of observing and photon
list output pose complex requirements on the data processing pipeline,
entangling detector calibrations and aspect reconstruction algorithms. Recent
improvements have achieved photometric repeatability of 0.05 and 0.03 mAB in
the FUV and NUV, respectively. We have detected a long term drift of order 1%
FUV and 6% NUV over the mission. Astrometric precision is of order 0.5" RMS in
both bands. In this paper we provide the GALEX user with a broad overview of
the calibration issues likely to be confronted in the current release.
Improvements are likely as the GALEX mission continues into an extended phase
with a healthy instrument, no consumables, and increased opportunities for
guest investigations.Comment: Accepted to the ApJS (a special GALEX issue
The GALEX Ultraviolet Atlas of Nearby Galaxies
We present images, integrated photometry, and surface-brightness and color profiles for a total of 1034 nearby galaxies recently observed by the Galaxy Evolution Explorer (GALEX) satellite in its far-ultraviolet (FUV; λ_(eff) = 1516 Å) and near-ultraviolet (NUV; λ_(eff) = 2267 Å) bands. Our catalog of objects is derived primarily from the GALEX Nearby Galaxies Survey (NGS) supplemented by galaxies larger than 1' in diameter serendipitously found in these fields and in other GALEX exposures of similar of greater depth. The sample analyzed here adequately describes the distribution and full range of properties (luminosity, color, star formation rate [SFR]) of galaxies in the local universe. From the surface brightness profiles obtained we have computed asymptotic magnitudes, colors, and luminosities, along with the concentration indices C31 and C42. We have also morphologically classified the UV surface brightness profiles according to their shape. This data set has been complemented with archival optical, near-infrared, and far-infrared fluxes and colors. We find that the integrated (FUV − K) color provides robust discrimination between elliptical and spiral/irregular galaxies and also among spiral galaxies of different subtypes. Elliptical galaxies with brighter K-band luminosities (i.e., more massive) are redder in (NUV − K) color but bluer in (FUV − NUV) (a color sensitive to the presence of a strong UV upturn) than less massive ellipticals. In the case of the spiral/irregular galaxies our analysis shows the presence of a relatively tight correlation between the (FUV − NUV) color (or, equivalently, the slope of the UV spectrum, β) and the total infrared-to-UV ratio. The correlation found between (FUV − NUV) color and K-band luminosity (with lower luminosity objects being bluer than more luminous ones) can be explained as due to an increase in the dust content with galaxy luminosity. The images in this Atlas along with the profiles and integrated properties are publicly available through a dedicated Web page
The AllWISE Motion Survey and the Quest for Cold Subdwarfs
The AllWISE processing pipeline has measured motions for all objects detected on Wide-field Infrared Survey Explorer (WISE) images taken between 2010 January and 2011 February. In this paper, we discuss new capabilities made to the software pipeline in order to make motion measurements possible, and we characterize the resulting data products for use by future researchers. Using a stringent set of selection criteria, we find 22,445 objects that have significant AllWISE motions, of which 3525 have motions that can be independently confirmed from earlier Two Micron All Sky Survey (2MASS) images, yet lack any published motions in SIMBAD. Another 58 sources lack 2MASS counterparts and are presented as motion candidates only. Limited spectroscopic follow-up of this list has already revealed eight new L subdwarfs. These may provide the first hints of a “subdwarf gap” at mid-L types that would indicate the break between the stellar and substellar populations at low metallicities (i.e., old ages). Another object in the motion list--WISEA J154045.67-510139.3--is a bright (J ≈ 9 mag) object of type M6; both the spectrophotometric distance and a crude preliminary parallax place it ~6 pc from the Sun. We also compare our list of motion objects to the recently published list of 762 WISE motion objects from Luhman. While these first large motion studies with WISE data have been very successful in revealing previously overlooked nearby dwarfs, both studies missed objects that the other found, demonstrating that many other nearby objects likely await discovery in the AllWISE data products
Ongoing Formation of Bulges and Black Holes in the Local Universe: New Insights from GALEX
We analyze a volume-limited sample of massive bulge-dominated galaxies with
data from both the Sloan Digital Sky Survey and the Galaxy Evolution Explorer
(GALEX) satellite. The galaxies have central velocity dispersions greater than
100 km/s and stellar surface mass densities that lie above the value where
galaxies transition from actively star forming to passive systems. The sample
is limited to redshifts 0.03<z<0.07. At these distances, the SDSS spectra
sample the light from the bulge-dominated central regions of the galaxies. The
GALEX NUV data provide high sensitivity to low rates of global star formation
in these systems. Our sample of bulge-dominated galaxies exhibits a much larger
dispersion in NUV-r colour than in optical g-r colour. Nearly all of the
galaxies with bluer NUV-r colours are AGN. Both GALEX images and SDSS colour
profiles demonstrate that the excess UV light is associated with an extended
disk. We find that galaxies with red outer regions almost never have a young
bulge or a strong AGN. Galaxies with blue outer regions have bulges and black
holes that span a wide range in age and accretion rate. Galaxies with young
bulges and strongly accreting black holes almost always have blue outer disks.
Our suggested scenario is one in which the source of gas that builds the bulge
and black hole is a low mass reservoir of cold gas in the disk.The presence of
this gas is a necessary, but not sufficient condition for bulge and black hole
growth. Some mechanism must transport this gas inwards in a time variable way.
As the gas in the disk is converted into stars, the galaxies will turn red, but
further gas infall can bring them back into the blue NUV-r sequence.(Abridged)Comment: 34 pages, 16 figures. Accepted for the GALEX special issue of ApJ
The AllWISE Motion Survey, Part 2
We use the AllWISE Data Release to continue our search for WISE-detected
motions. In this paper, we publish another 27,846 motion objects, bringing the
total number to 48,000 when objects found during our original AllWISE motion
survey are included. We use this list, along with the lists of confirmed
WISE-based motion objects from the recent papers by Luhman and by Schneider et
al. and candidate motion objects from the recent paper by Gagne et al. to
search for widely separated, common-proper-motion systems. We identify 1,039
such candidate systems. All 48,000 objects are further analyzed using
color-color and color-mag plots to provide possible characterizations prior to
spectroscopic follow-up. We present spectra of 172 of these, supplemented with
new spectra of 23 comparison objects from the literature, and provide
classifications and physical interpretations of interesting sources. Highlights
include: (1) the identification of three G/K dwarfs that can be used as
standard candles to study clumpiness and grain size in nearby molecular clouds
because these objects are currently moving behind the clouds, (2) the
confirmation/discovery of several M, L, and T dwarfs and one white dwarf whose
spectrophotometric distance estimates place them 5-20 pc from the Sun, (3) the
suggestion that the Na 'D' line be used as a diagnostic tool for interpreting
and classifying metal-poor late-M and L dwarfs, (4) the recognition of a triple
system including a carbon dwarf and late-M subdwarf, for which model fits of
the late-M subdwarf (giving [Fe/H] ~ -1.0) provide a measured metallicity for
the carbon star, and (5) a possible 24-pc-distant K5 dwarf + peculiar red L5
system with an apparent physical separation of 0.1 pc.Comment: 62 pages with 80 figures, accepted for publication in The
Astrophysical Journal Supplement Series, 23 Mar 2016; second version fixes a
few small typos and corrects the footnotes for Table
Extinction Corrected Star Formation Rates Empirically Derived from Ultraviolet-Optical Colors
Using a sample of galaxies from the Sloan Digital Sky Survey spectroscopic
catalog with measured star-formation rates (SFRs) and ultraviolet (UV)
photometry from the GALEX Medium Imaging Survey, we derived empirical linear
correlations between the SFR to UV luminosity ratio and the UV-optical colors
of blue sequence galaxies. The relations provide a simple prescription to
correct UV data for dust attenuation that best reconciles the SFRs derived from
UV and emission line data. The method breaks down for the red sequence
population as well as for very blue galaxies such as the local ``supercompact''
UV luminous galaxies and the majority of high redshift Lyman Break Galaxies
which form a low attenuation sequence of their own.Comment: 20 pages, 11 figures, accepted for publication in the ApJS GALEX
special issu
The On-Orbit Performance of the Galaxy Evolution Explorer
We report the first year on-orbit performance results for the Galaxy
Evolution Explorer (GALEX), a NASA Small Explorer that is performing a survey
of the sky in two ultraviolet bands. The instrument comprises a 50 cm diameter
modified Ritchey-Chretien telescope with a 1.25 degree field of view,
selectable imaging and objective grism spectroscopic modes, and an innovative
optical system with a thin-film multilayer dichroic beam splitter that enables
simultaneous imaging by a pair of photon counting, microchannel plate, delay
line readout detectors. Initial measurements demonstrate that GALEX is
performing well, meeting its requirements for resolution, efficiency,
astrometry, bandpass definition and survey sensitivity.Comment: This paper will be published as part of the Galaxy Evolution Explorer
(GALEX) Astrophysical Journal Letters Special Issu
