227 research outputs found

    Some two-component beta decay measurements

    Get PDF
    The shorter half-life of a two-component beta decay was determined. Natural silver was activated with thermal neutrons to produce isotopes Ag108 and Ag110. The shorter half-life decay (that of Ag110) was isolated from that of Ag108 by measuring the decay of only the higher energy betas associated with Ag110. Because a large portion of the energy spectrum was excluded, pile-up corrections were necessary. The half-life was also determined using the more conventional two-component method. The single component method yielded a half-life of 23.26 =/- .03 seconds compared with 23.43 =/- .04 seconds determined by the two-component methods. (Only statistical uncertainties are shown above.) The techniques used for making pile-up corrections are described, and systematic errors are discussed. This investigation indicates that accurate half-life determinations can be obtained with the single-component method.http://archive.org/details/sometwocomponent00ballCaptain, United States ArmyApproved for public release; distribution is unlimited

    Using Xenon as a Heavy Atom for Determining Phases in Sperm Whale Metmyoglobin

    Get PDF
    Xenon gas can be used as a heavy atom for determining phases in a protein. We demonstrate that an interpretable electron density map can be obtained for sperm whale metmyoglobin from a single xenon derivative using iterative single isomorphous replacement with the anomalous scattering method

    Using Xenon as a Heavy Atom for Determining Phases in Sperm Whale Metmyoglobin

    Get PDF
    Xenon gas can be used as a heavy atom for determining phases in a protein. We demonstrate that an interpretable electron density map can be obtained for sperm whale metmyoglobin from a single xenon derivative using iterative single isomorphous replacement with the anomalous scattering method

    Generating Ground Reference Data for a Global Impervious Surface Survey

    Get PDF
    We are engaged in a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. The GLS data from Landsat provide an unprecedented opportunity to map global urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such as buildings, roads and parking lots. Finally, with GLS data available for the 1975, 1990, 2000, and 2005 time periods, and soon for the 2010 period, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. Our approach works across spatial scales using very high spatial resolution commercial satellite data to both produce and evaluate continental scale products at the 30m spatial resolution of Landsat data. We are developing continental scale training data at 1m or so resolution and aggregating these to 30m for training a regression tree algorithm. Because the quality of the input training data are critical, we have developed an interactive software tool, called HSegLearn, to facilitate the photo-interpretation of high resolution imagery data, such as Quickbird or Ikonos data, into an impervious versus non-impervious map. Previous work has shown that photo-interpretation of high resolution data at 1 meter resolution will generate an accurate 30m resolution ground reference when coarsened to that resolution. Since this process can be very time consuming when using standard clustering classification algorithms, we are looking at image segmentation as a potential avenue to not only improve the training process but also provide a semi-automated approach for generating the ground reference data. HSegLearn takes as its input a hierarchical set of image segmentations produced by the HSeg image segmentation program [1, 2]. HSegLearn lets an analyst specify pixel locations as being either positive or negative examples, and displays a classification of the study area based on these examples. For our study, the positive examples are examples of impervious surfaces and negative examples are examples of non-impervious surfaces. HSegLearn searches the hierarchical segmentation from HSeg for the coarsest level of segmentation at which selected positive example locations do not conflict with negative example locations and labels the image accordingly. The negative example regions are always defined at the finest level of segmentation detail. The resulting classification map can be then further edited at a region object level using the previously developed HSegViewer tool [3]. After providing an overview of the HSeg image segmentation program, we provide a detailed description of the HSegLearn software tool. We then give examples of using HSegLearn to generate ground reference data and conclude with comments on the effectiveness of the HSegLearn tool

    On-Orbit Measurement of the Focal Length of the SNPP VIIRS Instrument

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is a whiskbroom system with 22 spectral bands split between 16 moderate resolution bands (M-bands), five imagery resolution bands (I-bands) and a panchromatic day-night band. Latitude and Longitude geolocation data are generated for each pixel at the M-band, I-band and day-night band spatial resolutions based upon various instrument parameters including focal length. In this study we measure the focal length of the VIIRS instrument from on-orbit data. This is achieved by simulating VIIRS band I2 using Landsat 8 OLI band 5 utilizing the VIIRS instrument system point spread function (PSF) and geolocation data generated with varying values of focal length. The focal length value that produces the highest spatial correlation between the original and simulated VIIRS data is taken to be the measured instrument focal length

    SNPP VIIRS Spectral Bands Co-Registration and Spatial Response Characterization

    Get PDF
    The Visible Infrared Imager Radiometer Suite (VIIRS) instrument onboard the Suomi National Polarorbiting Partnership (SNPP) satellite was launched on 28 October 2011. The VIIRS has 5 imagery spectral bands (I-bands), 16 moderate resolution spectral bands (M-bands) and a panchromatic day/night band (DNB). Performance of the VIIRS spatial response and band-to-band co-registration (BBR) was measured through intensive pre-launch tests. These measurements were made in the non-aggregated zones near the start (or end) of scan for the I-bands and M-bands and for a limited number of aggregation modes for the DNB in order to test requirement compliance. This paper presents results based on a recently re-processed pre-launch test data. Sensor (detector) spatial impulse responses in the scan direction are parameterized in terms of ground dynamic field of view (GDFOV), horizontal spatial resolution (HSR), modulation transfer function (MTF), ensquared energy (EE) and integrated out-of-pixel (IOOP) spatial response. Results are presented for the non-aggregation, 2-sample and 3-sample aggregation zones for the I-bands and M-bands, and for a limited number of aggregation modes for the DNB. On-orbit GDFOVs measured for the 5 I-bands in the scan direction using a straight bridge are also presented. Band-to-band co-registration (BBR) is quantified using the prelaunch measured band-to-band offsets. These offsets may be expressed as fractions of horizontal sampling intervals (HSIs), detector spatial response parameters GDFOV or HSR. BBR bases on HSIs in the non-aggregation, 2-sample and 3-sample aggregation zones are presented. BBR matrices based on scan direction GDFOV and HSR are compared to the BBR matrix based on HSI in the non-aggregation zone. We demonstrate that BBR based on GDFOV is a better representation of footprint overlap and so this definition should be used in BBR requirement specifications. We propose that HSR not be used as the primary image quality indicator, since we show that it is neither an adequate representation of the size of sensor spatial response nor an adequate measure of imaging quality

    JPSS-1/NOAA-20 VIIRS Early On-Orbit Geometric Performance

    Get PDF
    The first NOAA/NASA Join Polar Satellite System (JPSS-1) satellite was successfully launched on November 18, 2017,becoming NOAA-20. Instruments on-board the NOAA-20 satellite include the Visible Infrared Imaging RadiometerSuite (VIIRS). This instrument is the second build of VIIRS, with the first flight instrument on-board NASA/NOAASuomi National Polar-orbiting Partnership (SNPP) satellite operating since October 2011. The purpose of these VIIRSinstruments is to continue the long-term measurements of biogeophysical variables for multiple applications includingweather forecasting, rapid response and climate research. The geometric performance of VIIRS is essential to retrievingaccurate biogeophysical variables. This paper describes the early on-orbit geometric performance of the JPSS-1/NOAA-20 VIIRS. It first discusses the on-orbit orbit and attitude performance, a key input needed for accurate geolocation. Itthen discusses the on-orbit geometric characterization and calibration of VIIRS and an initial assessment of thegeometric accuracy. It follows with a discussion of an improvement in the instrument geometric model that correctssmall geometrical artifacts that appear in the along-scan direction. Finally, this paper discusses on-orbit measurements ofthe focal length and the impact of this on the scan-to-scan underlap/overlap

    Suomi NPP VIIRS Prelaunch and On-orbit Geometric Calibration and Characterization

    Get PDF
    The Visible Infrared Imager Radiometer Suite (VIIRS) sensor was launched 28 October 2011 on the Suomi National Polarorbiting Partnership (SNPP) satellite. VIIRS has 22 spectral bands covering the spectrum between 0.412 m and 12.01 m, including 16 moderate resolution bands (M-bands) with a spatial resolution of 750 m at nadir, 5 imaging resolution bands (I-bands) with a spatial resolution of 375 m at nadir, and 1 day-night band (DNB) with a near-constant 750 m spatial resolution throughout the scan. These bands are located in a visible and near infrared (VisNIR) focal plane assembly (FPA), a short- and mid-wave infrared (SWMWIR) FPA and a long-wave infrared (LWIR) FPA. All bands, except the DNB, are co-registered for proper environmental data records (EDRs) retrievals. Observations from VIIRS instrument provide long-term measurements of biogeophysical variables for climate research and polar satellite data stream for the operational communitys use in weather forecasting and disaster relief and other applications. Well Earth-located (geolocated) instrument data is important to retrieving accurate biogeophysical variables. This paper describes prelaunch pointing and alignment measurements, and the two sets of on-orbit correction of geolocation errors, the first of which corrected error from 1,300 m to within 75 m (20 I-band pixel size), and the second of which fine tuned scan angle dependent errors, bringing VIIRS geolocation products to high maturity in one and a half years of the SNPP VIIRS on-orbit operations. Prelaunch calibration and the on-orbit characterization of sensor spatial impulse responses and band-to-band co-registration (BBR) are also described

    An Automated Algorithm to Screen Massive Training Samples for a Global Impervious Surface Classification

    Get PDF
    An algorithm is developed to automatically screen the outliers from massive training samples for Global Land Survey - Imperviousness Mapping Project (GLS-IMP). GLS-IMP is to produce a global 30 m spatial resolution impervious cover data set for years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. This unprecedented high resolution impervious cover data set is not only significant to the urbanization studies but also desired by the global carbon, hydrology, and energy balance researches. A supervised classification method, regression tree, is applied in this project. A set of accurate training samples is the key to the supervised classifications. Here we developed the global scale training samples from 1 m or so resolution fine resolution satellite data (Quickbird and Worldview2), and then aggregate the fine resolution impervious cover map to 30 m resolution. In order to improve the classification accuracy, the training samples should be screened before used to train the regression tree. It is impossible to manually screen 30 m resolution training samples collected globally. For example, in Europe only, there are 174 training sites. The size of the sites ranges from 4.5 km by 4.5 km to 8.1 km by 3.6 km. The amount training samples are over six millions. Therefore, we develop this automated statistic based algorithm to screen the training samples in two levels: site and scene level. At the site level, all the training samples are divided to 10 groups according to the percentage of the impervious surface within a sample pixel. The samples following in each 10% forms one group. For each group, both univariate and multivariate outliers are detected and removed. Then the screen process escalates to the scene level. A similar screen process but with a looser threshold is applied on the scene level considering the possible variance due to the site difference. We do not perform the screen process across the scenes because the scenes might vary due to the phenology, solar-view geometry, and atmospheric condition etc. factors but not actual landcover difference. Finally, we will compare the classification results from screened and unscreened training samples to assess the improvement achieved by cleaning up the training samples. Keywords
    • …
    corecore