12 research outputs found

    The significance of multiple metal tolerance in Mimulus guttatus Fischer ex DC

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN010327 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Comparison of bio-physical marine products from SeaWiFS, MODIS and a bio-optical model with in situ measurements from Northern European waters

    No full text
    In this paper, we compare bio-physical marine products from SeaWiFS, MODIS and a novel bio-optical absorption model with in situ measurements of chlorophyll-a (Chla) concentrations, total suspended material (TSM) concentrations, normalized water-leaving radiances (nLw) and absorption coefficients of coloured dissolved organic matter (aCDOM), total particulate (atotal) and phytoplankton (aphy) for 26 satellite match-ups in three Northern European seas. Cruises were undertaken in 2002 and 2003 in phytoplankton dominated open ocean waters of the Celtic Sea and optically complex waters of the Western English Channel (WEC) and North Sea. For all environments, Chla concentrations varied from 0.4 to 7.8 mg m-3, TSM from 0.2 to 6.0 mg l-1 and aCDOM at 440 nm from 0.02 to 0.30 m-1.SeaWiFS OC4v4, with the Remote Sensing Data Analysis Service (RSDAS) atmospheric correction for turbid waters, showed the most accurate retrieval of in situ Chla (RMS = 0.24; n = 26), followed by MODIS chlor_a_3 (RMS = 0.40; n = 26). This suggested that improving the atmospheric correction over optically complex waters results in more accurate Chla concentrations compared to those obtained using more complicated Chla algorithms. We found that the SeaWiFS OC4v4 and the MODIS chlor_a_2 switching band ratio algorithms, which mainly use longer wavebands than 443 nm, were less affected by CDOM. They were both more accurate than chlor_MODIS in the higher CDOM waters of the North Sea. Compared to MODIS the absorption model was better at retrieving atotal (RMS = 0.39; n = 78) and aCDOM (RMS = 0.79; n = 12) in all study areas and TSM in the WEC (RMS = 0.04; n = 10) but it underestimated Chla concentrations (RMS = 0.45; n = 26). The results are discussed in terms of atmospheric correction, sensor characteristics and the functioning and performance of Chla algorithms.<br/

    Absorption-based algorithm of primary production for total and size-fractionated phytoplankton in coastal waters

    Get PDF
    Most satellite models of production have been designed and calibrated for use in the open ocean. Coastal waters are optically more complex, and the use of chlorophyll <i>a</i> (chl <i>a</i>) as a first-order predictor of primary production may lead to substantial errors due to significant quantities of coloured dissolved organic matter (CDOM) and total suspended material (TSM) within the first optical depth. We demonstrate the use of phytoplankton absorption as a proxy to estimate primary production in the coastal waters of the North Sea and Western English Channel for both total, micro- and nano+pico-phytoplankton production. The method is implemented to extrapolate the absorption coefficient of phytoplankton and production at the sea surface to depth to give integrated fields of total and micro- and nano+pico-phytoplankton primary production using the peak in absorption coefficient at red wavelengths. The model is accurate to 8% in the Western English Channel and 22% in this region and the North Sea. By comparison, the accuracy of similar chl <i>a</i> based production models was >250%. The applicability of the method to autonomous optical sensors and remotely sensed aircraft data in both coastal and estuarine environments is discussed

    Variability in specific-absorption properties and their use in a semi-analytic ocean colour algorithm for MERIS in North Sea and Western English Channel coastal waters.

    No full text
    Coastal areas of the North Sea are commercially important for fishing and tourism, and are subject to the increasingly adverse effects of harmful algal blooms, eutrophication and climate change. Monitoring phytoplankton in these areas using Ocean Colour Remote Sensing is hampered by the high spatial and temporal variations in absorption and scattering properties. In this paper we demonstrate a clustering method based on specific-absorption properties that gives accurate water quality products from the Medium Resolution Imaging Spectrometer (MERIS). A total of 468 measurements of Chlorophyll a (Chla), Total Suspended Material (TSM), specific- (sIOP) and inherent optical properties (IOP) were measured in the North Sea between April 1999 and September 2004. Chla varied from 0.2 to 35 mg m- 3, TSM from 0.2 to 75 g m- 3 and absorption properties of coloured dissolved organic material at 442 nm (aCDOM(442)) was 0.02 to 0.26 m- 1. The variation in absorption properties of phytoplankton (aph) and non-algal particles (aNAP) were an order of magnitude greater than that for aph normalized to Chla (aph*) and aNAP normalized to TSM (aNAP*). Hierarchical cluster analysis on aph*, aNAP* and aCDOM reduced this large data set to three groups of high aNAP*–aCDOM, low aph* situated close to the coast, medium values further offshore and low aNAP*–aCDOM, high aph* in open ocean and Dutch coastal waters. The median sIOP of each cluster were used to parameterize a semi-analytical algorithm to retrieve concentrations of Chla, TSM and aCDOM(442) from MERIS data. A further 60 measurements of normalized water leaving radiance (nLw), Chla, TSM, aCDOM(442) and aNAP(442) collected between 2003 and 2006 were used to assess the accuracy of the satellite products. The regionalized MERIS algorithm showed improved performance in Chla and aCDOM(442) estimates with relative percentage differences of 29 and 8% compared to 34 and 134% for standard MERIS Chla and adg(442) products, and similar retrieval for TSM at concentrations > 1 g- 3
    corecore