15 research outputs found

    Willing to be involved in cancer

    Get PDF
    F.J.G-M., A.M.T-L. and P.A.R. were funded by the Anonymous Trust, University of St Andrews.Genome sequencing is now a common procedure, but prior to this, screening experiments using protein baits was one of the routinely used methods that, occasionally, allowed the identification of new gene products. One such experiment uncovered the gene product called willin/human Expanded/FRMD6. Initial characterization studies found that willin bound phospholipids and was strongly co-localised with actin. However, subsequently, willin was found to be the closest human sequence homologue of the Drosophila protein Expanded (Ex), sharing 60% homology with the Ex FERM domain. This in turn suggested, and then was proven that willin could activate the Hippo signalling pathway. This review describes the increasing body of knowledge about the actions of willin in a number of cellular functions related to cancer. However, like many gene products involved in aspects of cell signalling, a convincing direct role for willin in cancer remains tantalising elusive, at present.Publisher PDFPeer reviewe

    Willin/FRMD6 influences mechanical phenotype and neuronal differentiation in mammalian cells by regulating ERK1/2 activity

    Get PDF
    This research was financially supported by an Engineering and Physical Sciences Research Council (EPSRC) Programme Grant (EP/P030017/1) and by the Biotechnology and Biological Sciences Research Council (BBSRC) Tools and Resources Development Fund (BB/P027148/1).Willin/FRMD6 is part of a family of proteins with a 4.1 ezrin-radixin-moesin (FERM) domain. It has been identified as an upstream activator of the Hippo pathway and, when aberrant in its expression, is associated with human diseases and disorders. Even though Willin/FRMD6 was originally discovered in the rat sciatic nerve, most studies have focused on its functional roles in cells outside of the nervous system, where Willin/FRMD6 is involved in the formation of apical junctional cell-cell complexes and in regulating cell migration. Here, we investigate the biochemical and biophysical role of Willin/FRMD6 in neuronal cells, employing the commonly used SH-SY5Y neuronal model cell system and combining biochemical measurements with Elastic Resonator Interference Stress Micropscopy (ERISM). We present the first direct evidence that Willin/FRMD6 expression influences both the cell mechanical phenotype and neuronal differentiation. By investigating cells with increased and decreased Willin/FRMD6 expression levels, we show that Willin/FRMD6 not only affects proliferation and migration capacity of cells but also leads to changes in cell morphology and an enhanced formation of neurite-like membrane extensions. These changes were accompanied by alterations of biophysical parameters such as cell force, the organization of actin stress fibers and the formation of focal adhesions. At the biochemical level, changes in Willin/FRMD6 expression inversely affected the activity of the extracellular signal-regulated kinases (ERK) pathway and downstream transcriptional factor NeuroD1, which seems to prime SH-SY5Y cells for retinoic acid (RA)-induced neuronal differentiation.Publisher PDFPeer reviewe

    Interferon-stimulated gene (ISG)-expression screening reveals the specific antibunyaviral activity of ISG20

    Get PDF
    Bunyaviruses pose a significant threat to human health, prosperity and food security. In response to viral infections, interferons (IFNs) upregulate the expression of hundreds of interferon stimulated genes (ISGs) whose cumulative action can potently inhibit the replication of bunyaviruses. We used a flow cytometry-based method to screen the ability of ∼500 unique ISGs from humans and rhesus macaques to inhibit the replication of Bunyamwera orthobunyavirus (BUNV), the prototype of both the Peribunyaviridae family and Bunyavirales order. Candidates possessing antibunyaviral activity were further examined using a panel of divergent bunyaviruses. Interestingly, one candidate, ISG20, exhibited potent antibunyaviral activity against most viruses examined from the Peribunyaviridae, Hantaviridae and Nairoviridae families, whereas phleboviruses (Phenuiviridae) largely escaped inhibition. Similar to other viruses known to be targeted by ISG20, the antibunyaviral activity of ISG20 is dependent upon its functional ribonuclease activity. Through use of an infectious VLP assay (based on the BUNV minigenome system), we confirmed that gene expression from all 3 viral segments is strongly inhibited by ISG20. Using in vitro evolution, we generated a substantially ISG20-resistant BUNV and mapped the determinants of ISG20 sensitivity/resistance. Taken together, we report that ISG20 is a broad and potent antibunyaviral factor yet some bunyaviruses are remarkably ISG20 resistant. Thus, ISG20 sensitivity/resistance could influence the pathogenesis of bunyaviruses, many of which are emerging viruses of clinical or veterinary significance

    Title redacted

    No full text

    Willing to be involved in cancer

    No full text
    Genome sequencing is now a common procedure, but prior to this, screening experiments using protein baits was one of the routinely used methods that, occasionally, allowed the identification of new gene products. One such experiment uncovered the gene product called willin/human Expanded/FRMD6. Initial characterization studies found that willin bound phospholipids and was strongly co-localised with actin. However, subsequently, willin was found to be the closest human sequence homologue of the Drosophila protein Expanded (Ex), sharing 60% homology with the Ex FERM domain. This in turn suggested, and then was proven that willin could activate the Hippo signalling pathway. This review describes the increasing body of knowledge about the actions of willin in a number of cellular functions related to cancer. However, like many gene products involved in aspects of cell signalling, a convincing direct role for willin in cancer remains tantalising elusive, at present

    The Expanding Family of FERM Proteins.

    No full text
    Our understanding of the FERM (4.1/ezrin/radixin/moesin) protein family has been rapidly expanding in the last few years, with the result that many new physiological functions have been ascribed to these biochemically unique proteins. In the present review, we will discuss a number of new FRMD (FERM domain)-containing proteins that were initially discovered from genome sequencing but are now being established through biochemical and genetic studies to be involved both in normal cellular processes, but are also associated with a variety of human diseases.</jats:p

    Willin, an upstream component of the Hippo signaling pathway, orchestrates mammalian peripheral nerve fibroblasts

    No full text
    Willin/FRMD6 was first identified in the rat sciatic nerve, which is composed of neurons, Schwann cells, and fibroblasts. Willin is an upstream component of the Hippo signaling pathway, which results in the inactivation of the transcriptional coactivator YAP through Ser127 phosphorylation. This in turn suppresses the expression of genes involved in cell growth, proliferation and cancer development ensuring the control of organ size, cell contact inhibition and apoptosis. Here we show that in the mammalian sciatic nerve, Willin is predominantly expressed in fibroblasts and that Willin expression activates the Hippo signaling cascade and induces YAP translocation from the nucleus to the cytoplasm. In addition within these cells, although it inhibits cellular proliferation, Willin expression induces a quicker directional migration towardsscratch closure and an increased expression of factors linked to nerve regeneration. These results show that Willin modulates sciatic nerve fibroblast activity indicating that Willin may have a potential role in the regeneration of theperipheral nervous system

    Gene expression alterations in salivary gland epithelia of Sjögren’s syndrome patients are associated with clinical and histopathological manifestations

    Get PDF
    Abstract Sjögren’s syndrome (SS) is a complex autoimmune disease associated with lymphocytic infiltration and secretory dysfunction of salivary and lacrimal glands. Although the etiology of SS remains unclear, evidence suggests that epithelial damage of the glands elicits immune and fibrotic responses in SS. To define molecular changes underlying epithelial tissue damage in SS, we laser capture microdissected (LCM) labial salivary gland epithelia from 8 SS and 8 non-SS controls for analysis by RNA sequencing (RNAseq). Computational interrogation of gene expression signatures revealed that, in addition to a division of SS and non-SS samples, there was a potential intermediate state overlapping clustering of SS and non-SS samples. Differential expression analysis uncovered signaling events likely associated with distinct SS pathogenesis. Notable signals included the enrichment of IFN-γ and JAK/STAT-regulated genes, and the induction of genes encoding secreted factors, such as LTF, BMP3, and MMP7, implicated in immune responses, matrix remodeling and tissue destruction. Identification of gene expression signatures of salivary epithelia associated with mixed clinical and histopathological characteristics suggests that SS pathology may be defined by distinct molecular subtypes. We conclude that gene expression changes arising in the damaged salivary epithelia may offer novel insights into the signals contributing to SS development and progression

    Inactivation of the Hippo Tumor Suppressor Pathway Promotes Melanoma [preprint]

    Get PDF
    Human melanomas are commonly driven by activating mutations in BRAF, which promote melanocyte proliferation through constitutive stimulation of the MAPK pathway. However, oncogenic BRAF alone is insufficient to promote melanoma; instead, its expression merely induces a transient burst of proliferation that ultimately ceases with the development of benign nevi (i.e. moles) comprised of growth-arrested melanocytes. The tumor suppressive mechanisms that induce this melanocytic growth arrest remain poorly understood. Recent modeling studies have suggested that the growth arrest of nevus melanocytes is not solely due to oncogene activation in individual cells, but rather due to cells sensing and responding to their collective overgrowth, similar to what occurs in normal tissues. This cell growth arrest is reminiscent of the arrest induced by activation of the Hippo tumor suppressor pathway, which is an evolutionarily conserved pathway known to regulate organ size. Herein, we demonstrate that oncogenic BRAF signaling activates the Hippo pathway in vitro, which leads to inhibition of the pro-growth transcriptional co-activators YAP and TAZ, ultimately promoting the growth arrest of melanocytes. We also provide evidence that the Hippo tumor suppressor pathway is activated in growth-arrested nevus melanocytes in vivo, both from single-cell sequencing of mouse models of nevogenesis and human tissue samples. Mechanistically, we observe that oncogenic BRAF promotes both ERK-dependent alterations in the actin cytoskeleton and whole-genome-doubling events, and that these two effects independently promote Hippo pathway activation. Lastly, we demonstrate that abrogation of the Hippo pathway, via melanocyte-specific deletion of the Hippo kinases Lats1/2, enables oncogenic BRAF-expressing melanocytes to bypass nevus formation, thus leading to the rapid onset of melanoma with 100% penetrance. This model is clinically relevant, as co-heterozygous loss of LATS1/2 is observed in ∼15% of human melanomas. Collectively, our data reveal that the Hippo pathway enforces the stable growth arrest of nevus melanocytes and therefore represents a critical and previously unappreciated barrier to melanoma development
    corecore