3 research outputs found

    Active vibration control using mechanical and electrical analogies

    Get PDF
    Mechanical-electrical analogous circuit models are widely used in electromechanical system design as they represent the function of a coupled electrical and mechanical system using an equivalent electrical system. This research uses electrical circuits to establish a discussion of simple active vibration control principles using two scenarios: an active vibration isolation system and an active dynamic vibration absorber (DVA) using a voice coil motor (VCM) actuator. Active control laws such as gain scheduling are intuitively explained using circuit analysis techniques. Active vibration control approaches are typically constraint by electrical power requirements. The electrical analogous is a fast approach for specifying power requirements on the experimental test platform which is based on a vibration shaker that provides the based excitation required for the single Degree- of-Freedom (1DoF) vibration model under study

    MEMS tunable capacitors and switches for RF applications

    No full text
    RF MEMS capacitive switches and tunable capacitors have been realized in an industrialized thin-film process developed for manufacturing high-quality inductors and capacitors. Combining integrated passives with high-performance tuning and switching elements on the same die offers a potential for building a new generation of RF front-ends for hand-held mobile communication. Capacitive switches with an insertion loss of 0.4 dB and an isolation of 17 dB at 1 GHz have been demonstrated. Dual-gap relay type tunable capacitors have been fabricated that show a continuous and reversible tuning ratio of 12 together with a quality factor larger than 150 at frequencies higher than 0.5 GHz. These are the highest tuning ratio and quality factor reported to date. A 0-level packaging concept that is compatible with the fabrication technology has been adopted
    corecore