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Abstract. Mechanical-electrical analogous circuit models are widely used in electromechanical 

system design as they represent the function of a coupled electrical and mechanical system using an 

equivalent electrical system.  This research uses electrical circuits to establish a discussion of simple 

active vibration control principles using two scenarios: an active vibration isolation system and an 

active dynamic vibration absorber ( DVA ) using  a voice coil motor (VCM) actuator. Active control 

laws such as gain scheduling are intuitively explained using circuit analysis techniques. Active 

vibration control approaches are typically constraint by electrical power requirements. The electrical 

analogous is a fast approach for specifying power requirements on the experimental test platform 

which is based on a vibration shaker that provides the based excitation required for the single Degree-

of-Freedom (1DoF) vibration model under study.  

1  Introduction 

Dynamic Vibration Absorbers (DVAs) were patented by Herman Frahzm in 1909 [1] and the principles of 

passive DVAs design were fully described by Ormondroyd and Den Hartog [2, 3].  

DVAs has been extensively studied in building structures, as defence mechanism against earthquakes, to 

counter seismic movements and wind forces [4]. DVAs are widely used to control vibration in structures. 

Passive control and active control are the typical methods for mitigating undesired vibrations. Active control 

requires sensors and actuators and electronic control systems to reduce vibration levels [5]. 

Coupled electrical and mechanical systems are typically analysed using equivalent circuit models. Equivalent 

circuit representations are widely used in electroacoustic [6] and electromechanical transducer analysis [7] 

due to their powerful visualization of the underlying physical phenomena. This study analyses an active 

DVA and an active vibration isolation system using electrical analogous circuit models.  

2 Modelling the experimental active vibration control rig. 

The experimental rig shown in Figure 1a. was built to test  the concept of active control using an adjustable 

mass connected to a planar spring and one VCM actuator. Vibration measurements are performed using two 

accelerometers, one connected to the absorber mass and the other one to the shaker table. Two electrical 

signals are recorded for VCM characterization that correspond to the VCM current and voltage which are 

measured using one isolated differential voltage probe and one current probe respectively. The physical 

model which is a pictorial representation of the system under study is shown in Figure 1b.  

The vibration model corresponds to a 1DoF with base excitation as shown in Figure 2. 

5th Symposium on the Mechanics of Slender Structures (MoSS2015) IOP Publishing
Journal of Physics: Conference Series 721 (2016) 012013 doi:10.1088/1742-6596/721/1/012013

Content from this work may be used under the terms of the Creative CommonsAttribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

mailto:Ali.hassan@northampton.ac.uk


The differential equation that describes the motion of the mass ‘m’ using 2nd Newton’s law is shown in 

Equation 1. 

   1 1 2 1 2mx U k x x c x x     (1) 

where 2x is the base excitation which is provided by the shaker table , 1x  describes the spring suspended 

mass motion, k is the helical spring stiffness, c is the mechanical damping and U is a generic actuator force.   

Rig specifications are shown in Table 1. The VCM is a GVCM-051-051-01 manufactured by Moticont. 

VCM impedance measurements were taken using the frequency response analyser PSM1735 with an IAI 

LCR interface manufactured by Newtons4th.  

a) Experimental rig b) Physical model
Figure 1. Active vibration control rig 

Table 1 Test rig parameters 

Parameter Value Unit Parameter Value Unit 

m 432.4 [g] 
no magnet
air coil

50E f Hz
L


2.1 [mH] 

c 0.5 

Negligible 
[Ns/m] 

no magnet
air coil

50E f Hz
R


3.08 [Ω] 

k 42.167 [kN/m] 
with magnet

50E f Hz
L


4.1 [mH] 

0
1

2
kf
m

 49.7 [Hz] 
with magnet

50E f Hz
R


3.3 [Ω] 

VCM
datasheet

 8 [N/A] 
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Figure 2. Active control vibration model with a generic actuator U (1DoF ) 

2.1 Equivalent circuit representation of the 1DoF active control rig with a generic actuator 

An analogous electrical and mechanical system will have differential equations of the same form. There are 
two analogues for the system shown in Figure 2. Type I analogues use current as mechanical force 
representation and Type II analogues use voltage as force representation. Table 2 shows the relationship 
between electrical and mechanical quantities.  

Table 2 Interpretation of electrical and mechanical quantities 

Electrical 
Quantity 

Mechanical Analog I 
(Force-Current) 

Mechanical 
Analog II 

(Force Voltage) 

Voltage, e Velocity, v Force, f 

Current, i Force, f Velocity, v 

Resistance, R Lubricity, 1/B 
(Inverse friction) 

Friction, B 

Capacitance, C Mass, M Compliance, 1/K 
(Inverse spring constant) 

Inductance, L Compliance, 1/K 
(Inverse spring constant) 

Mass, M 

Type I is represented in Figure 3 whilst Type II in Figure 4. A circuit analysis using Kirchoff’s Laws yields 
the same differential equation as shown in Equation 1. For Type I, the differential equations are obtained 
using KCL in node A as shown in Equation 2 and for Type II, they are obtained using KVL in loop I as 
shown in Equation 3.  
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 1 21
A 1 2

1KCL N  
x xdxC x x dt u

dt R L


   

     A 1 1 2 1 2KCL N  mx c x x k x x u    

     1 1

initial conditions
U 0s 0 ; x 0s x 0s 0  

(2) 

      1
2 1 2 1

1KVL Loop 1  0dxu x x dt R x x L
C dt

     

     2 1 2 1 1KVL Loop 1  0u k x x c x x mx     

     1 1

initial conditions
U 0s 0 ; x 0s x 0s 0  

(3) 

Figure 3. 1DoF active control rig with generic actuator (Type I) 
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a) 

b) 

Figure 4. 1DoF active control rig with generic actuator (Type II) 

2.2 Active vibration control strategies for two real scenarios: vibration isolation and vibration absorbers. 

The concept of vibration isolation is that the mass ‘m’ is held motionless. That implies that the speed 1x
must be 0. Using the circuit shown in Figure 4, vibration isolation implies that the current 1x  must be 0. 
Using the simplified circuit in Figure 5 the control law could be derived by using superposition theorem and 
the current divider rule as shown in Equation 4. Electrical variables such as current and voltages are 
expressed as forces and velocities respectively.  

     1 2 2
MST

MP MS MP MS MP MS MP

ZZ U UsX sX sX
Z Z Z Z Z Z Z

   
  

If we want to minimize x1 motion  1 0x   then  2 MSU sX Z  

(4) 
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 MS
kZ s c
s

 

   2 MSU s sX Z         2U s cs k X s  

(5) 

The amplitude of an undamped DVA tends to be infinite at its resonant frequency. The optimum active 
control laws could be derived from the circuit in Figure 5. The actuator force u must be chosen for an infinite 
actuator stroke at the excitation frequency of 2x . An active DVA that mimics a passive DVA without 
damping at any frequency implies an actuator speed or current 1 2x x  of infinite value.  This condition is 
easily obtained using Kirchoff’s Voltage Laws after applying the source transformation theorem as shown in 
Figure 6a. and Equation 6.   

   1 2 2 1 2 1 only if 0MS MPx x U s X X Z s X X Z        

       2
2 1U s X s X s ms cs k     ,  if s j  

                  2 1 2 1
kU j X j X j c j m k j X j X j c j m j        


  
             

  
  

(6) 

If we use the circuit in Figure 6b. the condition is achieved in Equation 7. 

   1 1 only if 0MS MPx U sX Z Z     

    2
1U s X s ms cs k  

            1 1
kU j X j c j m k j X j c j m j      


  
          

  
  

(7) 

According to Equation.6 and Equation 7,  the actuator force must remove the damping of the system and  it 
should provide a force proportional to actuator relative position  1 2x x  of magnitude α or acceleration 

 1 2x x  of magnitude γ. Gain scheduling control consists on two possible gains, one proportional to 
acceleration (α) and the other proportional to position (γ) are defined in Equation 7 using the natural resonant 
frequency of the absorber mass [8].  

                 2
2 1 2 12

k jU j X j X j c j m j X j X j c m k j




        
 

   
                       

  

 

Using the natural resonant frequency 0
k
m

 

(Acceleration gain) 
0

2
0

2 1
k
mkm m

 
 

 

    
             

 

(Position gain)    
02 2 2

0

k
mm k m



    


    

(9) 
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 MS C
kZ s R Z c
s

   

 MPZ s ms

  || MS MP
T MS MP

MS MP

Z ZZ s Z Z
Z Z


 



Vibration isolation 1 0x   

Figure 5. Actuator force for active vibration isolation 

Active DVA. 

Using circuit in Fig 4a 

1 2  at resonancex x  when 

2 0x 

a) 

 Active DVA 

Using circuit in Fig 4b 

1  at resonancex  when 

2 0x 

b)

Figure 6. Actuator force for an Active DVA 
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2.3    Equivalent circuit representation of the 1DoF active control rig with a VCM 

If the chosen actuator is a Voice Coil Motor, the coupling equation between the electrical and mechanical 
system is due to Lorentz Force and Faradays’s Law of Induction. The actuator mechanical force is 
proportional to actuator’s current if there is a constant magnetic flux density in the VCM gap for all possible 

actuator stroke positions dN cte
dx

 . The Back Electromotive Force is proportional to the total number of 

turns and actuator speed as shown in Equation 9. 

VCM is the motor constant 

VCM
dN Bl
dx




   where:

 N is the number of turns,  

 B the magnetic flux density in the gap 

 l, the length of the wounded wire 

(Actuator mechanical force)   VCMF Bl I l   

(Induced voltage BEMF) VCM
d d dxE N N x
dt dx dt


 

       

(9) 

A possible circuit representation that couples the mechanical system and electrical side uses a gyrator and it 
is shown in Figure 7.  The governing differential equations for this circuit are shown in Equation 10. 

Figure 7. 1DoF active control rig with VCM (Type II) 

  1KVL Loop 1  0E E E
diV R i L v
dt

      (10) 
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     2 2 1 2 1 1KVL Loop 2  0v k x x c x x mx     

 

   

2 1

1 2 1 2 1 1

0
   

 0

E E E
VCM

diV R i L r x x
r l dt

r i k x x c x x mx
 


       

  
       

For active vibration isolation or active control of a DVA, the VCM current should be same as the control 
laws shown in Equations 5-7 respectively. For example, ideal vibration isolation requires a VCM current 
according to Equation 11. As it can be seen, this control strategy only requires reading the shaker table 
position, speed or acceleration ( 2 2 2, ,x x x ). External electronics such as linear servo motor drives could 
adjust the VCM voltage to ensure the VCM current follows the desired control law. 

   2 2
MS

VCM MS
VCM

Zu i x Z I s sX


           2
VCM VCM

c kI s s X s
 

 
  
 

 
(11) 

2.4 Electrical impedance and power requirements 

Electrical power requirements for active vibration control are one of the most important factors when 
choosing between Passive and Active solutions for mitigating vibrations in an industrial application. The 
circuit shown in Figure 8 corresponds to the equivalent impedance seen by the electrical system due to the 
mechanical one after impedance transformations.  
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Figure 8. VCM Electrical impedance (Z) 

An analysis of Figure 8 using source transformation theorem yields to the following electrical impedance 
expression as shown in Equation 12. 

 
     

   
Z E MES MES

ES MES

V s I s Z s
s

Z s Z s







where 

 

 

1
1 1 1

1
MES

MES MES
MES

Z s

R s L
s C



 




and  ES E EZ s R s L  

(12) 

If the shaker table does not move, the impedance equation could be further simplified as shown in Equation 
13.
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Z E

ES MES

V s
s

Z s Z s



   when   2 0X s  (13) 

Electrical power requirements could be calculated using the impedance expressions as shown in Equation 14. 

     
 

 

  
  

2
2

Re Active power
=Z  

Z Im Reactive power
ESE

ES
ES

P sV s
P s s I s

s P s

 
  


(14) 

2.5 Mass on the spring motion using the equivalent circuit 

Using the circuit transformation shown in Figure 9 an equivalent circuit as shown in Figure 10 could be 
analysed for obtaining the mass motion 1 1 1, ,x x x  

Figure 9. Equivalent circuit transformation to the Mechanical System 
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Figure 10. Equivalent circuit for absorber motion determination 

The absorber mass motion could be analysed using Superposition Theorem and the current divider rule 
according to Equation 15. 

1 2 2
M

M M

E

EST

L
M C L

ES

Vr
ZZx x

rZ R Z Z
Z



 

  
   where 

2
1

1
1

M
M M

T

L
M C L

ES

Z
r

Z R Z Z
Z





  

   ;  ;   ; ES E E M LM CM
kZ s R s L R c Z ms Z
s

     

(15) 

The circuit shown in Figure 10 describes the shift in resonant frequency when a short circuit is placed across 
the VCM terminals. 

3 Model validation 

Transmissibility experiments were carried out with the VCM terminals in open and closed circuit 
respectively. The model in Figure 7 could consider the added damping due to eddy current losses in the 
VCM actuator when there is an open circuit across the VCM terminals as show in Figure 11.  

Fitting transmissibility plots to experimental results using the theoretical model in Equation 15 shows that 
the best damping factor is 6.1 N/(m/s) when the test was performed with an open circuit across VCM 
terminals and the  damping factor is 20.2 N/(m/s)  when a short circuit is placed across VCM terminals, 
Figures 12-13. Under short circuit test the resonant frequency shifted from 49.7Hz to 51Hz. This shift in 
frequency is explained in Figure10 as additional stiffness added by the VCM inductance (LE). 
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2
2

1

X
X

ms cs k
cs k
 




(16) 

The open circuit resistor value in this case is calculated according to Equation 17  if r is 8 N/A and 6.1
oc

c 

Ns/m and c=0.5Ns/m, therefore OCR is 11.4Ω. 

2

OCR
oc

r
c c


 (17) 

Figure 11. Model improvements to include VCM Open Circuit damping 

Figure 12. Transmissibility plots with an open circuit across VCM terminals 

20 25 30 35 40 45 50 55 60 65 70 75 80
0.01

0.02
0.03
0.04
0.05

0.1

0.2
0.3
0.4
0.5

1
1.5

22.53
Fitted Transmissibility plot with VCM open circuit

 

Theoretical Tr.
Experimental Tr.

20 25 30 35 40 45 50 55 60 65 70 75 80
0

50

100

150

200

 

Theoretical Tr.
Experimental Tr.
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Figure 13. Transmissibility plots with a closed circuit across VCM terminals 

The circuit shown in Figure 11 provides a trend that is in good agreement with experimental results when the 
VCM terminals are under open and closed circuit conditions respectively. The green trace in Figure 13 
corresponds to the circuit values shown in Table 3.  

Table 3 Circuit values 

20 25 30 35 40 45 50 55 60 65 70 75 80
0.1

0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.91

1.25
1.5

1.75
2

Fitted Transmissibility plot with VCM closed circuit

 

Theoretical Tr.
Experimental Tr.
Proposed circuit

20 25 30 35 40 45 50 55 60 65 70 75 80
0

50

100

150

200

 

Theoretical Tr.
Experimental Tr.
Proposed circuit

Parameter Value Unit Parameter Value Unit 

m

432.4 [g] EL 4.1 [mH] 

c

0.5 
Negligible [Ns/m] ER 3.3 [Ω] 

k

42.167 [kN/m] VCM r   7.4 [N/A] 

0
1

2
kf
m



49.7 [Hz] OCR 9.78 [Ω] 

MC 23.71 [µF] 

ML 0.4324 [H] 

MR 0.5 [Ω] 
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4 Conclusion 

Coupled mechanical-electrical systems could be analysed with electromechanical analogous circuit models. 
The practicality of this method is that it provides a better visualization and interpretation of the system.  A 
complete derivation of active control laws for dynamic vibration absorbers and vibration isolation is 
straightforward by analysing these circuits.  Electrical power requirements could be defined in the frequency 
domain by calculating the electrical impedance seen by the input voltage source connected to the VCM. The 
proposed equivalent circuits show a good agreement with experimental results.  
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