77 research outputs found
Targeting Bone Metabolism in Patients with Advanced Prostate Cancer: Current Options and Controversies
Maintaining bone health remains a clinical challenge in patients with prostate cancer (PC) who are at risk of developing metastatic bone disease and increased bone loss due to hormone ablation therapy. In patients with cancer-treatment induced bone loss (CTIBL), antiresorptive agents have been shown to improve bone mineral density (BMD) and to reduce the risk of fractures. For patients with bone metastases, both zoledronic acid and denosumab delay skeletal related events (SREs) in the castration resistant stage of disease. Novel agents targeting the Wnt inhibitors dickkopf-1 and sclerostin are currently under investigation for the treatment of osteoporosis and malignant bone disease. New antineoplastic drugs such as abiraterone, enzalutamide, and Radium-223 are capable of further delaying SREs in patients with advanced PC. The benefit of antiresorptive treatment for patients with castration sensitive PC appears to be limited. Recent trials on the use of zoledronic acid for the prevention of bone metastases failed to be successful, whereas denosumab delayed the occurrence of bone metastases by a median of 4.1 months. Currently, the use of antiresorptive drugs to prevent bone metastases still remains a field of controversies and further trials are needed to identify patient subgroups that may profit from early therapy
Clinical impact of soluble Neuropilin-1 in ovarian cancer patients and its association with its circulating ligands of the HGF/c-MET axis
Background: Neuropilin (NRP) is a transmembrane protein, which has been shown to be a pro-angiogenic mediator and implicated as a potential driver of cancer progression. NRP-1 up-regulation in ovarian cancer tissue predicts poor prognosis. However, the clinical relevance of the soluble form of NRP-1 (sNRP-1) as a circulating biomarker in ovarian cancer patients is unknown. - Methods/patients cohort: sNRP-1 levels were quantified in a cohort of 88 clinically documented ovarian cancer patients by a commercially available sNRP-1 enzyme-linked immunosorbent assay (ELISA) kit (Biomedica, Vienna, Austria). Patients (81.8% with FIGOIII/IV) received primary cytoreductive surgery with the aim of macroscopic complete resection (achieved in 55.7% of patients) and the recommendation of adjuvant chemotherapy in line with national guidelines. - Results: Higher levels of sNRP-1 reflected more advanced disease (FIGO III/IV) and indicated a trend towards suboptimal surgical outcome, i.e. any residual tumor. sNRP-1 was neither related to the patients’ age nor the BRCA1/2 mutational status. Patients with higher sNRP-1 levels at primary diagnosis had a significantly reduced progression-free survival (PFS) (HR = 0.541, 95%CI: 0.304 - 0.963; p = 0.037) and overall survival (OS) (HR = 0.459, 95%CI: 0.225 - 0.936; p = 0.032). Principal component analysis showed that sNRP-1 levels were unrelated to the circulating hepatocyte growth factor (HGF) and the soluble ectodomain of its receptor the tyrosine kinase mesenchymal–epithelial transition (c-MET), suggesting that there is no proportional serological concentration gradient of soluble components of the NRP-1/HGF/c-MET signaling axis. - Conclusions: In line with the previously shown tissue-based prognostic role, we demonstrated for the first time that sNRP-1 can also act as a readily accessible, prognostic biomarker in the circulation of patients with ovarian cancer at primary diagnosis. Given its known role in angiogenesis and conferring resistance to the poly ADP-ribose polymerase (PARP) inhibitor olaparib in vitro, our results encourage more detailed investigation into sNRP-1 as a potential predictive biomarker for bevacizumab and/or PARP-inhibitor treatment
Osteoprotegerin production by breast cancer cells is suppressed by dexamethasone and confers resistance against TRAIL-induced apoptosis
ABSTRACT Osteoprotegerin (OPG) is a decoy receptor for receptor activator of NF-kB ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). While RANKL is essential for osteoclastogenesis and facilitates breast cancer migration into bone, TRAIL promotes breast cancer apoptosis. We analyzed the expression of OPG and TRAIL and its modulation in estrogen receptor-positive MCF-7 cells and receptor-negative MDA-MB-231 cells. In both cells, OPG mRNA levels and protein secretion were dose-and time-dependently enhanced by interleukin (IL)-1b and suppressed by dexamethasone. In contrast to MCF-7 cells, MDA-MB-231 abundantly expressed TRAIL mRNA, which was enhanced by IL-1b and inhibited by dexamethasone. TRAIL activated pro-apoptotic caspase-3, -7, and poly-ADP-ribose polymerase and decreased cell numbers of MDA-MB-231, but had no effect on MCF-7 cells. Gene silencing siRNA directed against OPG resulted in a 31% higher apoptotic rate compared to non-target siRNA-treated MDA-MB-231 cells. Furthermore, TRAIL induced significantly less apoptosis in cells cultured in conditioned media (containing OPG) compared to cells exposed to TRAIL in fresh medium lacking OPG ( P < 0.01) and these protective effects were reversed by blocking OPG with its specific ligand RANKL ( P < 0.05). The association between cancer cell survival and OPG production by MDA-MB-231 cells was further supported by the finding, that modulation of OPG secretion using IL-1b or dexamethasone prior to TRAIL exposure resulted in decreased and increased rate of apoptosis, respectively ( P < 0.05). Thus, OPG secretion by breast cancer cells is modulated by cytokines and dexamethasone, and may represent a critical resistance mechanism that protects against TRAIL-induced apoptosis
From bone to breast and back - the bone cytokine RANKL and breast cancer
Receptor activator of nuclear factor-κB ligand (RANKL) plays a pivotal role in regulating bone homeostasis. Osteoporosis and malignant bone disease secondary to breast cancer are characterized by enhanced RANKL production and increased bone turnover. Thus, denosumab, a monoclonal antibody to RANKL, has been developed and is now approved for various bone loss conditions. Recent results indicate that RANKL may also promote the development and osseous migration of breast cancer
Probenecid as a sensitizer of bisphosphonate-mediated effects in breast cancer cells
Background: Anti-resorptive bisphosphonates (BP) are used for the treatment of osteoporosis and bone metastases. Clinical studies indicated a benefit in survival and tumor relapse in subpopulations of breast cancer patients receiving zoledronic acid, thus stimulating the debate about its anti-tumor activity. Amino-bisphosphonates in nM concentrations inhibit farnesyl pyrophosphate synthase leading to accumulation of isopentenyl pyrophosphate (IPP) and the ATP/ pyrophosphate adduct ApppI, which induces apoptosis in osteoclasts. For anti-tumor effects μM concentrations are needed and a sensitizer for bisphosphonate effects would be beneficial in clinical anti-tumor applications. We hypothesized that enhancing intracellular pyrophosphate accumulation via inhibition of probenecid-sensitive channels and transporters would sensitize tumor cells for bisphosphonates anti-tumor efficacy.
Methods: MDA-MB-231, T47D and MCF-7 breast cancer cells were treated with BP (zoledronic acid, risedronate, ibandronate, alendronate) and the pyrophosphate channel inhibitors probenecid and novobiocin. We determined cell viability and caspase 3/7 activity (apoptosis), accumulation of IPP and ApppI, expression of ANKH, PANX1, ABCC1, SLC22A11, and the zoledronic acid target gene and tumor-suppressor KLF2.
Results: Treatment of MDA-MB-231 with BP induced caspase 3/7 activity, with zoledronic acid being the most effective. In MCF-7 and T47D either BP markedly suppressed cell viability with only minor effects on apoptosis. Co-treatment with probenecid enhanced BP effects on cell viability, IPP/ApppI accumulation as measurable in MCF-7 and T47D cells, caspase 3/7 activity and target gene expression. Novobiocin co-treatment of MDA-MB-231 yielded identical results on viability and apoptosis compared to probenecid, rendering SLC22A family members as candidate modulators of BP effects, whereas no such evidence was found for ANKH, ABCC1 and PANX1.
Conclusions: In summary, we demonstrate effects of various bisphosphonates on caspase 3/7 activity, cell viability and expression of tumor suppressor genes in breast cancer cells. Blocking probenecid- and novobiocin-sensitive channels and transporters enhances BP anti-tumor effects and renders SLC22A family members good candidates as BP modulators. Further studies will have to unravel if treatment with such BP-sensitizers translates into preclinical and clinical efficacy
- …
