1,496 research outputs found

    Fabrication of high quality ferromagnetic Josephson junctions

    Full text link
    We present ferromagnetic Nb/Al2O3/Ni60Cu40/Nb Josephson junctions (SIFS) with an ultrathin Al2O3 tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with jc spreads less than 2% was obtained.Comment: 5 pages, 6 figures; VORTEX IV conference contribution; Submitted to Physica

    An investigation of the influence of integration of steel heat treatment and brazing process on the microstructure and performance of vacuum-brazed cemented carbide/steel joints

    Get PDF
    Cemented carbides are commonly brazed to transformation hardening tool steels without taking a proper and adequate steel heat treatment into account. This publication shows the limits and possibilities of integrating a steel heat treatment, including a quenching process, into a vacuum brazing process. Therefore, copper-based filler metals are selected to ensure the steel component’s high and homogenous hardness and supply a high joint quality. In this context, the aimed steel hardness was chosen in the range between 400 and 440 HV1 based on industrial experiences. This specific hardness range for the steel component was set to avoid wear of machining tools in subsequent machining steps if the steel hardness is too high and to prevent wear and deformation of the tool itself in case of a steel hardness too low. When using the transformation hardening tool steel 1.2344, the obtained shear strength values did not exceed a threshold of 20 MPa which can be attributed to the required N2-quenching from brazing respectively solution annealing temperature. However, the steel components featured a hardness of 527.1 HV1 for the specimens brazed with pure copper at 1100 °C and 494.0 HV1 for those brazed with a CuGeNi filler metal at 1040 °C. This publication also shows an alternative route to manufacture long-lasting tools with a cemented carbide/steel joint by applying the difficult to wet and not well researched, but for many other reasons very suitable precipitation hardening maraging steel. Especially, the comparable low coefficient of thermal expansion (CTE) and the capability of the lath martensite to compensate large amounts of externally imposed stresses during the austenite-to-martensite transformation as well as the cooling rate independent of the hardening mechanism of the maraging steel and a pre-applied nickel coating including the corresponding diffusion processes are responsible for a sound joint with a shear strength > 300 MPa. Moreover, the subsequent tempering process at 580 °C for 3 h provides the maraging steel joining partner with a hardness of 426.6 ± 6.0 HV1

    The Potential of Static and Thermochromic Window Films for Energy Efficient Building Renovations

    Get PDF
    The type of glazing implemented in a building plays an important role in the heat management of a building. Solar heat entering through glazing causes overheating of interior spaces and increases building’s cooling load. In this work, the energy saving potential of window films based on Cholesteric Liquid Crystals (CLC) is explored. This emerging technology allows for the fabrication of static and thermochromic solar heat rejecting window films and can provide a simple renovation solution towards energy efficient buildings. Simulations on a model office showed that static CLC-based window films can save up to 29% on a building’s annual energy use in warm climates. In climates with distinct summer and winter seasons, static solar heat rejecting windows films cause an additional heating demand during winters, which reduces the annual energy savings. In these climates, the benefit of thermochromic CLC-based window films becomes evident and an annual energy saving up to 22% can be achieved.</p

    The influence of different diamond spacings in diamond impregnated tools on the wear behavior and material removal

    Get PDF
    The influence of the spacing of four diamonds on the breakout time and material removal is investigated for a diamond impregnated tool for machining concrete workpieces. A statistical analysis using the Cox-model shows a positive effect of larger spacings on the lifetime of the diamonds where no effect on the material removal can be found. Moreover, a relationship between the position of the diamond and its lifetime is observed

    Lack of associations between female hormone levels and visuospatial working memory, divided attention and cognitive bias across two consecutive menstrual cycles

    Get PDF
    Background: Interpretation of observational studies on associations between prefrontal cognitive functioning and hormone levels across the female menstrual cycle is complicated due to small sample sizes and poor replicability. Methods: This observational multisite study comprised data of n = 88 menstruating women from Hannover, Germany, and Zurich, Switzerland, assessed during a first cycle and n = 68 re-assessed during a second cycle to rule out practice effects and false-positive chance findings. We assessed visuospatial working memory, attention, cognitive bias and hormone levels at four consecutive time-points across both cycles. In addition to inter-individual differences we examined intra-individual change over time (i.e., within-subject effects). Results: Estrogen, progesterone and testosterone did not relate to inter-individual differences in cognitive functioning. There was a significant negative association between intra-individual change in progesterone and change in working memory from pre-ovulatory to mid-luteal phase during the first cycle, but that association did not replicate in the second cycle. Intra-individual change in testosterone related negatively to change in cognitive bias from menstrual to pre-ovulatory as well as from pre-ovulatory to mid-luteal phase in the first cycle, but these associations did not replicate in the second cycle. Conclusions: There is no consistent association between women’s hormone levels, in particular estrogen and progesterone, and attention, working memory and cognitive bias. That is, anecdotal findings observed during the first cycle did not replicate in the second cycle, suggesting that these are false-positives attributable to random variation and systematic biases such as practice effects. Due to methodological limitations, positive findings in the published literature must be interpreted with reservation

    Sexual interaction in digital contexts and its implications for sexual health: a conceptual analysis

    Get PDF
    Based on its prevalence, there is an urgent need to better understand the mechanisms, opportunities and risks of sexual interaction in digital contexts (SIDC) that are related with sexual arousal. While there is a growing body of literature on SIDC, there is also a lack of conceptual clarity and classification. Therefore, based on a conceptual analysis, we propose to distinguish between sexual interaction (1) through , (2) via , and (3) with digital technologies. (1) Sexual interactions through digital technologies are face-to-face sexual interactions that (a) have been started digitally (e.g., people initiating face-to-face sexual encounters through adult dating apps) or (b) are accompanied by digital technology (e.g., couples augmenting their face-to-face sexual encounters through filming themselves during the act and publishing the amateur pornography online). (2) Sexual interactions via digital technology are technology-mediated interpersonal sexual interactions (e.g., via text chat: cybersex; via smartphone: sexting; via webcam: webcam sex/camming). (3) Sexual interactions with digital technology occur when the technology itself has the role of an interaction partner (e.g., sexual interaction with a sex robot or with a media persona in pornography). The three types of SIDC and their respective subtypes are explained and backed up with empirical studies that are grouped according to two major mediators: consent and commerce. Regarding the causes and consequences of the three types of SIDC we suggest a classification that entails biological, psychological, social, economic, and technological factors. Regarding implications of SIDC we suggest to focus on both opportunities and risks for sexual health. The proposed conceptual framework of SIDC is meant to inform future research

    Pitch-Responsive Cortical Regions in Congenital Amusia

    Get PDF
    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. SIGNIFICANCE STATEMENT The neural causes of congenital amusia, a lifelong deficit in pitch and music perception, are not fully understood. We tested the hypothesis that amusia is due to abnormalities in brain regions that respond selectively to sounds with a pitch in normal listeners. Surprisingly, amusic individuals exhibited pitch-responsive regions that were similar to normal-hearing controls in extent, selectivity, and anatomical location. We discuss how our results inform current debates on the neural basis of amusia and how the ability to identify pitch-responsive regions in amusic subjects will make it possible to ask more precise questions about their role in amusic deficits

    THE URGE TO CHECK SOCIAL NETWORKING SITES: ANTECEDENTS AND CONSEQUENCES

    Get PDF
    Social networking sites (SNSs), combined with the rapid growth trajectory of mobile devices, and widespread deployment of mobile data services, have evolved as a primary platform for daily social interaction. While the majority of users enjoy frequent interactions with their friends and family members, some users suffer from incessant urges to check up on the lives of others on their social networks. In the last decade, the use of SNSs has received much attention in the IS literature. Not until recently, researchers have begun to examine the dark side of using SNSs. In this study, we attempt to advance existing literature by exploring the role of urges in the context of SNSs. Particularly, we propose a research model that examines the antecedents and consequences of the urge to check SNSs. We will test the model with SNS users using structural equation modeling. We believe that current work will enrich the existing literature on the dark side of SNS use, and raise the awareness in the community regarding this emerging phenomenon

    Automatic estimation of harmonic tension by distributed representation of chords

    Full text link
    The buildup and release of a sense of tension is one of the most essential aspects of the process of listening to music. A veridical computational model of perceived musical tension would be an important ingredient for many music informatics applications. The present paper presents a new approach to modelling harmonic tension based on a distributed representation of chords. The starting hypothesis is that harmonic tension as perceived by human listeners is related, among other things, to the expectedness of harmonic units (chords) in their local harmonic context. We train a word2vec-type neural network to learn a vector space that captures contextual similarity and expectedness, and define a quantitative measure of harmonic tension on top of this. To assess the veridicality of the model, we compare its outputs on a number of well-defined chord classes and cadential contexts to results from pertinent empirical studies in music psychology. Statistical analysis shows that the model's predictions conform very well with empirical evidence obtained from human listeners.Comment: 12 pages, 4 figures. To appear in Proceedings of the 13th International Symposium on Computer Music Multidisciplinary Research (CMMR), Porto, Portuga
    • …
    corecore