59 research outputs found

    Dense Stellar Populations: Initial Conditions

    Full text link
    This chapter is based on four lectures given at the Cambridge N-body school "Cambody". The material covered includes the IMF, the 6D structure of dense clusters, residual gas expulsion and the initial binary population. It is aimed at those needing to initialise stellar populations for a variety of purposes (N-body experiments, stellar population synthesis).Comment: 85 pages. To appear in The Cambridge N-body Lectures, Sverre Aarseth, Christopher Tout, Rosemary Mardling (eds), Lecture Notes in Physics Series, Springer Verla

    Taking tissue engineering principles into theatre: augmentation of impacted allograft with human bone marrow stromal cells

    No full text
    Human bone marrow contains bone progenitor cells that arise from multipotent mesenchymal stem cells. Seeding bone progenitor cells onto a scaffold can produce a 3D living composite with significant mechanical and biological potential. This article details laboratory and clinical findings from two clinical cases, where different proximal femoral conditions were treated using impacted allograft augmented with marrow-derived autogenous progenitor cells. Autologous bone marrow was seeded onto highly washed morselized allograft and impacted. Samples of the impacted graft were also taken for ex vivo analysis. Both patients made an uncomplicated clinical recovery. Imaging confirmed defect filling with encouraging initial graft incorporation. Histochemical and alkaline phosphatase staining demonstrated that a live composite graft with osteogenic activity had been introduced into the defects. These studies demonstrate that marrow-derived cells can adhere to highly washed morselized allograft, survive the impaction process and proliferate with an osteoblastic phenotype, thus creating a living composite
    corecore