32 research outputs found
Continuous blood glucose monitoring reveals enormous circadian variations in pregnant diabetic rats
Aim: Diabetes in pregnancy is a major burden with acute and long-term consequences. Its treatment requires adequate diagnosis and monitoring of therapy. Many experimental research on diabetes during pregnancy has been performed in rats. Recently, continuous blood glucose monitoring of non-pregnant diabetic rats revealed an increased circadian variability of blood glucose that made a single blood glucose measurement per day inappropriate to reflect glycemic status. Continuous blood glucose measurement has never been performed in pregnant rats. We wanted to perform continuous blood glucose monitoring in pregnant rats to decipher the influence of pregnancy on blood glucose in diabetic and normoglycemic status. Methods: We used the transgenic Tet29 diabetes rat model with an inducible knock down of the insulin receptor via RNA interference upon application of doxycycline (DOX) leading to insulin resistant type II diabetes. All Tet29 rats received a HD-XG telemetry implant (Data Sciences International, USA) that measured blood glucose and activity continuously. Rats were divided into four groups and blood glucose was monitored until end of pregnancy or the corresponding period: Tet29 + DOX (diabetic) non-pregnant, Tet29 + DOX (diabetic) pregnant, Tet29 (normoglycemic) non-pregnant, Tet29 (normoglycemic) pregnant. Results: Allanalyzed rats displayed a circadian variation in blood glucose concentration. Circadian variability was much more pronounced in pregnant diabetic rats than in normoglycemic pregnant rats. Pregnancy ameliorated variation in blood glucose in diabetic situation. Pregnancy continuously decreased blood glucose during normoglycemic pregnancy. Diabetic rats were less active than normoglycemic rats. We performed a calculation showing that application of continuous blood glucose measurement reduces Interpretation: Continuous blood glucose monitoring via a telemetry device in pregnant rats provides a more informative picture of the glycemic situation in comparison to single measurements. This could improve diagnosis and therapy of diabetes, decrease animal numbers within experimental settings, and add another physiological parameter (activity) to the analysis that could be helpful in testing therapeutic concepts targeting blood glucose levels and peripheral muscle function. We propose continuous glucose monitoring as a new tool for the evaluation of pregnant diabetic rats
Delineation of Two Clinically and Molecularly Distinct Subgroups of Posterior Fossa Ependymoma
Despite the histological similarity of ependymomas from throughout the neuroaxis, the disease likely comprises multiple independent entities, each with a distinct molecular pathogenesis. Transcriptional profiling of two large independent cohorts of ependymoma reveals the existence of two demographically, transcriptionally, genetically, and clinically distinct groups of posterior fossa (PF) ependymomas. Group A patients are younger, have laterally located tumors with a balanced genome, and are much more likely to exhibit recurrence, metastasis at recurrence, and death compared with Group B patients. Identification and optimization of immunohistochemical (IHC) markers for PF ependymoma subgroups allowed validation of our findings on a third independent cohort, using a human ependymoma tissue microarray, and provides a tool for prospective prognostication and stratification of PF ependymoma patients
Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition
SummarySmoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma (SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large cohort of SHH-MBs (n = 133). SHH pathway mutations involved PTCH1 (across all age groups), SUFU (infants, including germline), and SMO (adults). Children >3 years old harbored an excess of downstream MYCN and GLI2 amplifications and frequent TP53 mutations, often in the germline, all of which were rare in infants and adults. Functional assays in different SHH-MB xenograft models demonstrated that SHH-MBs harboring a PTCH1 mutation were responsive to SMO inhibition, whereas tumors harboring an SUFU mutation or MYCN amplification were primarily resistant
Immune profiling and functional analysis of NK and T cells in ataxia telangiectasia
Ataxia telangiectasia (AT) is a rare autosomal-recessive disorder characterized by profound neurodegeneration, combined immunodeficiency, and an increased risk for malignant diseases. Treatment options for AT are limited, and the long-term survival prognosis for patients remains grim, primarily due to the emergence of chronic respiratory pathologies, malignancies, and neurological complications. Understanding the dysregulation of the immune system in AT is fundamental for the development of novel treatment strategies. In this context, we performed a retrospective longitudinal immunemonitoring of lymphocyte subset distribution in a cohort of AT patients (n = 65). Furthermore, we performed FACS analyses of peripheral blood mononuclear cells from a subgroup of 12 AT patients to examine NK and T cells for the expression of activating and functional markers. We observed reduced levels of peripheral blood CD3+CD8+ cytotoxic T cells, CD3+CD4+ T helper cells, and CD19+ B cells, whereas the amount of CD3−-CD56+ NK cells and CD3+CD56+ NKT-like cells was similar compared with age-matched controls. Notably, there was no association between the age-dependent kinetic of T-, B-, or NK-cell counts and the occurrence of malignancy in AT patients. Additionally, our results indicate an altered NK- and T-cell response to cytokine stimulation in AT with increased levels of TRAIL, FasL, and CD16 expression in NK cells, as well as an elevated activation level of T cells in AT with notably higher expression levels of IFN-γ, CD107a, TRAIL, and FasL. Together, these findings imply function alterations in AT lymphocytes, specifically in T and NK cells, shedding light on potential pathways for innovative therapies
Health care reform in the USA: Recommendations from USA and non-USA radiologists
AIM: To compare the opinions and recommendations of imaging specialists from United States (USA) and non-USA developed nations for USA health care reform
A framework based on subject-specific musculoskeletal models and Monte Carlo simulations to personalize muscle coordination retraining
Abstract Excessive loads at lower limb joints can lead to pain and degenerative diseases. Altering joint loads with muscle coordination retraining might help to treat or prevent clinical symptoms in a non-invasive way. Knowing how much muscle coordination retraining can reduce joint loads and which muscles have the biggest impact on joint loads is crucial for personalized gait retraining. We introduced a simulation framework to quantify the potential of muscle coordination retraining to reduce joint loads for an individuum. Furthermore, the proposed framework enables to pinpoint muscles, which alterations have the highest likelihood to reduce joint loads. Simulations were performed based on three-dimensional motion capture data of five healthy adolescents (femoral torsion 10°–29°, tibial torsion 19°–38°) and five patients with idiopathic torsional deformities at the femur and/or tibia (femoral torsion 18°–52°, tibial torsion 3°–50°). For each participant, a musculoskeletal model was modified to match the femoral and tibial geometry obtained from magnetic resonance images. Each participant’s model and the corresponding motion capture data were used as input for a Monte Carlo analysis to investigate how different muscle coordination strategies influence joint loads. OpenSim was used to run 10,000 simulations for each participant. Root-mean-square of muscle forces and peak joint contact forces were compared between simulations. Depending on the participant, altering muscle coordination led to a maximum reduction in hip, knee, patellofemoral and ankle joint loads between 5 and 18%, 4% and 45%, 16% and 36%, and 2% and 6%, respectively. In some but not all participants reducing joint loads at one joint increased joint loads at other joints. The required alteration in muscle forces to achieve a reduction in joint loads showed a large variability between participants. The potential of muscle coordination retraining to reduce joint loads depends on the person’s musculoskeletal geometry and gait pattern and therefore showed a large variability between participants, which highlights the usefulness and importance of the proposed framework to personalize gait retraining
Continuous Blood Glucose Monitoring Reveals Enormous Circadian Variations in Pregnant Diabetic Rats
AimDiabetes in pregnancy is a major burden with acute and long-term consequences. Its treatment requires adequate diagnosis and monitoring of therapy. Many experimental research on diabetes during pregnancy has been performed in rats. Recently, continuous blood glucose monitoring of non-pregnant diabetic rats revealed an increased circadian variability of blood glucose that made a single blood glucose measurement per day inappropriate to reflect glycemic status. Continuous blood glucose measurement has never been performed in pregnant rats. We wanted to perform continuous blood glucose monitoring in pregnant rats to decipher the influence of pregnancy on blood glucose in diabetic and normoglycemic status.MethodsWe used the transgenic Tet29 diabetes rat model with an inducible knock down of the insulin receptor via RNA interference upon application of doxycycline (DOX) leading to insulin resistant type II diabetes. All Tet29 rats received a HD-XG telemetry implant (Data Sciences International, USA) that measured blood glucose and activity continuously. Rats were divided into four groups and blood glucose was monitored until end of pregnancy or the corresponding period: Tet29 + DOX (diabetic) non-pregnant, Tet29 + DOX (diabetic) pregnant, Tet29 (normoglycemic) non-pregnant, Tet29 (normoglycemic) pregnant.ResultsAll analyzed rats displayed a circadian variation in blood glucose concentration. Circadian variability was much more pronounced in pregnant diabetic rats than in normoglycemic pregnant rats. Pregnancy ameliorated variation in blood glucose in diabetic situation. Pregnancy continuously decreased blood glucose during normoglycemic pregnancy. Diabetic rats were less active than normoglycemic rats. We performed a calculation showing that application of continuous blood glucose measurement reduces animal numbers needed to detect a given effect in experimental setting by decreasing variability and SD.InterpretationContinuous blood glucose monitoring via a telemetry device in pregnant rats provides a more informative picture of the glycemic situation in comparison to single measurements. This could improve diagnosis and therapy of diabetes, decrease animal numbers within experimental settings, and add another physiological parameter (activity) to the analysis that could be helpful in testing therapeutic concepts targeting blood glucose levels and peripheral muscle function. We propose continuous glucose monitoring as a new tool for the evaluation of pregnant diabetic rats