356 research outputs found

    Summer Carbonate Chemistry in the Dalton Polynya, East Antarctica

    Get PDF
    The carbonate chemistry in the Dalton Polynya in East Antarctica (115°–123°E) was investigated in summer 2014/2015 using high‐frequency underway measurements of CO2 fugacity (fCO2) and discrete water column measurements of total dissolved inorganic carbon (TCO2) and total alkalinity. Air‐sea CO2 fluxes indicate this region was a weak net source of CO2 to the atmosphere (0.7 ± 0.9 mmol C m−2 day−1) during the period of observation, with the largest degree of surface water supersaturation (ΔfCO2 = +45 μatm) in ice‐covered waters near the Totten Ice Shelf (TIS) as compared to the ice‐free surface waters in the Dalton Polynya. The seasonal depletion of mixed‐layer TCO2 (6 to 51 μmol/kg) in ice‐free regions was primarily driven by sea ice melt and biological CO2 uptake. Estimates of net community production (NCP) reveal net autotrophy in the ice‐free Dalton Polynya (NCP = 5–20 mmol C m−2 day−1) and weakly heterotrophic waters near the ice‐covered TIS (NCP = −4–0 mmol C m−2 day−1). Satellite‐derived estimates of chlorophyll a (Chl a) and sea ice coverage suggest that the early summer season in 2014/2015 was anomalous relative to the long‐term (1997–2017) record, with lower surface Chl a concentrations and a greater degree of sea ice cover during the period of observation; the implications for seasonal primary production and air‐sea CO2 exchange are discussed. This study highlights the importance of both physical and biological processes in controlling air‐sea CO2 fluxes and the significant interannual variability of the CO2 system in Antarctic coastal regions

    Late-summer biogeochemistry in the Mertz Polynya: East Antarctica

    Get PDF
    A marked reconfiguration of the Mertz Polynya following the 2010 calving of the Mertz Glacier Tongue has been associated with a decrease in the size and activity of the polynya. We report observations of the oceanic carbonate (CO2) system in late-summer 2013, the third post-calving summer season. Estimates of seasonal net community production (NCP) based on inorganic carbon deficits and the oxygen-argon ratio indicate that the waters on the shelf to the east of Commonwealth Bay (adjacent to the Mertz Glacier) remain productive compared to pre-calving conditions. The input of residual or excess alkalinity from melting sea ice is found to contribute to the seasonal enhancement of carbonate saturation state and pH in shelf waters. Mean rates of NCP in 2012-2013 are more than twice as large as those observed in the pre-calving summers of 2001 and 2008 and suggest that the new (post-calving) configuration of the polynya favors enhanced net community production and a stronger surface ocean sink for atmospheric CO2 due at least in part to the redistribution of sea ice and associated changes in summer surface stratification

    The general relativistic infinite plane

    Get PDF
    Uniform fields are one of the simplest and most pedagogically useful examples in introductory courses on electrostatics or Newtonian gravity. In general relativity there have been several proposals as to what constitutes a uniform field. In this article we examine two metrics that can be considered the general relativistic version of the infinite plane with finite mass per unit area. The first metric is the 4D version of the 5D "brane" world models which are the starting point for many current research papers. The second case is the cosmological domain wall metric. We examine to what extent these different metrics match or deviate from our Newtonian intuition about the gravitational field of an infinite plane. These solutions provide the beginning student in general relativity both computational practice and conceptual insight into Einstein's field equations. In addition they do this by introducing the student to material that is at the forefront of current research.Comment: Accepted for publication in the American Journal of Physic

    Seasonality of biological and physical controls on surface ocean CO2 from hourly observations at the Southern Ocean Time Series site south of Australia

    Get PDF
    The Subantarctic Zone (SAZ), which covers the northern half of the Southern Ocean between the Subtropical and Subantarctic Fronts, is important for air-sea CO2 exchange, ventilation of the lower thermocline, and nutrient supply for global ocean productivity. Here we present the first high-resolution autonomous observations of mixed layer CO2 partial pressure (pCO(2)) and hydrographic properties covering a full annual cycle in the SAZ. The amplitude of the seasonal cycle in pCO(2) (similar to 60 mu atm), from near-atmospheric equilibrium in late winter to similar to 330 mu atm in midsummer, results from opposing physical and biological drivers. Decomposing these contributions demonstrates that the biological control on pCO(2) (up to 100 mu atm), is 4 times larger than the thermal component and driven by annual net community production of 2.45 +/- 1.47 mol C m(-2) yr(-1). After the summer biological pCO(2) depletion, the return to near-atmospheric equilibrium proceeds slowly, driven in part by autumn entrainment into a deepening mixed layer and achieving full equilibration in late winter and early spring as respiration and advection complete the annual cycle. The shutdown of winter convection and associated mixed layer shoaling proceeds intermittently, appearing to frustrate the initiation of production. Horizontal processes, identified from salinity anomalies, are associated with biological pCO(2) signatures but with differing impacts in winter (when they reflect far-field variations in dissolved inorganic carbon and/or biomass) and summer (when they suggest promotion of local production by the relief of silicic acid or iron limitation). These results provide clarity on SAZ seasonal carbon cycling and demonstrate that the magnitude of the seasonal pCO(2) cycle is twice as large as that in the subarctic high-nutrient, low-chlorophyll waters, which can inform the selection of optimal global models in this region

    The equivalence principle, uniformly accelerated reference frames, and the uniform gravitational field

    Get PDF
    The relationship between uniformly accelerated reference frames in flat spacetime and the uniform gravitational field is examined in a relativistic context. It is shown that, contrary to previous statements in the pages of this journal, equivalence does not break down in this context. No restrictions to Newtonian approximations or small enclosures are necessary
    corecore