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RESEARCH ARTICLE
10.1002/2017JC013015

Late-summer biogeochemistry in the Mertz Polynya:
East Antarctica
E. H. Shadwick1,2 , B. Tilbrook2,3 , and K. I. Currie4

1Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, USA, 2Antarctic Climate &
Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia, 3CSIRO Oceans and
Atmosphere, Hobart, Tasmania, Australia, 4Centre for Chemical and Physical Oceanography, National Institute of Water
and Atmospheric Research, University of Otago, Dunedin, New Zealand

Abstract A marked reconfiguration of the Mertz Polynya following the 2010 calving of the Mertz Gla-
cier Tongue has been associated with a decrease in the size and activity of the polynya. We report obser-
vations of the oceanic carbonate (CO2) system in late-summer 2013, the third post-calving summer
season. Estimates of seasonal net community production (NCP) based on inorganic carbon deficits and
the oxygen-argon ratio indicate that the waters on the shelf to the east of Commonwealth Bay (adjacent
to the Mertz Glacier) remain productive compared to pre-calving conditions. The input of residual or
excess alkalinity from melting sea ice is found to contribute to the seasonal enhancement of carbonate
saturation state and pH in shelf waters. Mean rates of NCP in 2012–2013 are more than twice as large as
those observed in the pre-calving summers of 2001 and 2008 and suggest that the new (post-calving)
configuration of the polynya favors enhanced net community production and a stronger surface ocean
sink for atmospheric CO2 due at least in part to the redistribution of sea ice and associated changes in
summer surface stratification.

1. Introduction

Coastal polynyas, areas of open water within the sea ice, play a role in air-sea gas exchange [Yager et al.,
1995; Sweeney et al., 2000; Else et al., 2012], sea ice and dense water formation [Orsi et al., 1999; Williams and
Bindoff, 2003; Tamura et al., 2012], and primary production [Arrigo and van Dijken, 2003; Shadwick et al.,
2013a]. Coastal polynyas form where strong katabatic winds drive recently formed sea ice away from the
coast, or another barrier such as a floating glacier tongue. Polynyas produce and export large quantities of
sea ice and brine released during the formation of this ice increases the salinity and density of the underly-
ing surface waters. Large volumes of dense shelf water, the precursor to Antarctic Bottom Water (AABW) are
produced in Antarctic coastal polynyas [Rintoul, 1998; Orsi et al., 1999]. In the Southern Ocean, the primary
sources of dense shelf water come from the Weddell Sea, the Ross Sea, and the East Antarctic polynyas near
the Mertz Glacier and surrounding embayments, collectively referred to as the Mertz Polynya [Orsi et al.,
1999].

Polynya surface waters are often the first areas of the polar regions to be exposed to solar radiation with
the return of the springtime sun, either due to reduced or absent ice cover, or because they often experi-
ence early break out of ice in spring [Mundy and Barber, 2001; Shadwick et al., 2011]. Both Arctic [Miller et al.,
2002; Shadwick et al., 2011] and Antarctic [Smith and Gordon, 1997; Arrigo and van Dijken, 2003] coastal poly-
nyas are thus often associated with high rates of spring and summer primary production. Relationships
between polynya dynamics and primary production have been reported in both Arctic [Arrigo and van
Dijken, 2004] and Antarctic systems [Arrigo and van Dijken, 2003; Cape et al., 2014], with the timing of ice
melt and the onset of summer stratification influencing the intensity of phytoplankton blooms and associ-
ated air-sea CO2 disequilibrium. Furthermore, the recent collapse of the Larsen ice shelves has been associ-
ated with newly uncovered embayments hosting seasonal production of similar magnitude to Antarctic
coastal polynyas [Cape et al., 2014]. The Mertz Polynya system in East Antarctica is of considerable interest
following dramatic changes to the polynya dynamics and biogeochemical system after the 2010 calving of
the Mertz Glacier Tongue [Tamura et al., 2012; Shadwick et al., 2013a; Nihashi and Ohshima, 2015; Ohshima
et al., 2016].

Key Points:
� Enhanced net community production

persists 3 years after Mertz Glacier
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� New polynya configuration appears
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uptake
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eastern shelf and slope appears
supported by input of residual or
excess alkalinity from melting sea ice
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Prior to 2010, the existence of the coastal Mertz Polynya could be attributed primarily to two environmental
factors. First, the floating Mertz Glacier Tongue (MGT) acted as a barrier to the westward advection of sea
ice associated with the Antarctic Coastal Current. Second, katabatic winds drove the formation of sea ice,
particularly in the lee of the MGT, and subsequently pushed the sea ice offshore [Massom et al., 1998]. The
icescape in the Mertz Polynya has undergone significant recent changes, largely precipitated by the Febru-
ary 2010 ungrounding of iceberg B09b [Young et al., 2010], and the subsequent calving of the Mertz Glacier
Tongue (Figure 1) [Shadwick et al., 2013a]. Prior to the MGT calving, the Mertz Polynya was one of the larg-
est in East Antarctica in terms of sea ice production [Tamura et al., 2008, 2012]. In 2011, the first summer
after the MGT calving, the size of the polynya was reduced and sea ice production declined substantially
[Tamura et al., 2012; Shadwick et al., 2013a]. A significant freshening of the surface waters and dense shelf
waters in the summer of 2011 has been reported [Shadwick et al., 2013a]. A recent estimate indicates that
the amount of sea ice production in the Mertz Polynya following the MGT calving decreased by as much as
40%, repositioning the region as the fifth largest polynya with respect to Antarctic sea ice production [Niha-
shi and Ohshima, 2015; Ohshima et al., 2016].

Following the MGT calving, several large sections of iceberg B09b remain grounded in Commonwealth Bay;
the iceberg has restricted the offshore transport of ice and imposed a near year-round sea ice coverage of
Commonwealth Bay. By contrast, the region east of Commonwealth Bay has a larger area of open water rel-
ative to the pre-MGT calving configuration due to the absence of both the MGT and the large area of fast-
ice that had previously built up east of the glacier tongue. We report observations from late-summer 2013
that suggest the region remains in a state of transition. Summer mixed-layer depths remain shallow relative
to the pre-calving conditions and the biogeochemical response to the physical environmental changes
appears to have persisted in shelf waters through three summer seasons.

2. Methods

The primary data sets were collected on board the New Zealand National Institute of Water and Atmo-
spheric Research (NIWA) R/V Tangaroa between 2 February and 12 March 2013 at stations shown in Figure
1 as part of a joint New Zealand-Australia research cruise (TAN1302) [Williams, 2013]. Additional observa-
tions from earlier voyages on board the Australian R/V Aurora Australis in January 2008 (AU0803) [Rosenberg
and Rintoul, 2010], January 2011 (AU1121) [Rosenberg and Rintoul, 2011], and January 2012 (AU11203)
[Rosenberg and Rintoul, 2012] are also presented to give a broader context for the recent changes in the
region (Figure 2).

On the 2013 voyage, data were acquired using a Seabird SBE9plus, with dual temperature and conductivity
sensors mounted on a SeaBird 24 bottle rosette frame with 22 Ocean Test Equipment 10 L bottles. The

Adélie Depression

MGT

GEORGE V LAND

Adélie Bank

Mertz Sill
Adélie Sill

Mertz Bank
Ninis 
Bank

CB

Figure 1. Map of the study area in the George V Land region of East Antarctica. Major features, including the Ad�elie Sill, Ad�elie Bank, Ad�elie
Depression, Mertz Bank, Mertz Sill, Ninis Bank, the Mertz Glacier Tongue (MGT), and Commonwealth Bay (CB) are indicated. The locations
of stations occupied in February 2013 offshore from the Ad�elie Sill are in blue and those on the shelf are in red.

Journal of Geophysical Research: Oceans 10.1002/2017JC013015

SHADWICK ET AL. SUMMER BIOGEOCHEMISTRY: MERTZ POLYNYA 7381



accuracy of temperature and salinity data were �0.0018C, and �0.003 kg m23, respectively. On the earlier
voyages, data were collected using a SeaBird SBE9plus CTD, with dual temperature and conductivity sensors
mounted on a SeaBird 24 bottle rosette frame, with 22 General Oceanics 10 L Niskin bottles. The accuracy
of temperature and salinity data from the RV Aurora Australis voyages (in 2008, 2011, and 2012) were
�0.0018C, and �0.002 kg m23, respectively.

2.1. Biogeochemical Observations
Discrete measurements of dissolved inorganic carbon (TCO2) and total alkalinity (AT) were made by coulo-
metric (using a SOMMA system) and (open cell) potentiometric titration (using components from Metrohm),
respectively [Dickson et al., 2007]. The AT analyses of samples from the 2013 cruise were made on board the
RV Tangaroa; TCO2 samples from the same cruise were fixed with a solution of mercuric chloride (HgCl2),
and stored in the dark at 48C before analysis in the laboratory at CSIRO in Hobart after the voyage. Samples
from the 2008, 2011, and 2012 voyages were analyzed on board the RV Aurora Australis. Regular analysis of
Certified Reference Materials (provided by A. G. Dickson, Scripps Institution of Oceanography) ensured that
the uncertainty (accuracy and precision) of the all the TCO2 and AT measurements presented was better
than 2.1 lmol kg21 for both parameters. Using the standard set of carbonate system equations pH (on the
seawater scale) and aragonite saturation state (X) were computed using the CO2SYS program of Lewis and
Wallace [1998] and using the equilibrium constants of Mehrbach et al. [1973] refit by Dickson and Millero
[1987]. The calcium (Ca21) concentration was assumed to be conservative and calculated as a function of
salinity [Riley and Tongudai, 1967]. Nitrate (NO2

3 ) plus nitrite (NO2
2 ), hereafter ‘‘nitrate,’’ was measured
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Figure 2. (a) Cruise track of the R/V Tangaroa during the joint New Zealand-Australia voyage in summer 2013 is overlaid on a Rapid
Response MODIS image from the NASA’s EarthData portal (www.earthdata.nasa.gov). The Mertz Glacier Tongue (MGT) and iceberg B09b
are indicated; (right) the cruise tracks and sea-ice conditions of previous voyages on board the R/V Aurora Australis in January (b) 2008, (c)
2011, and (d) 2012.
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following standard procedures
[Grasshoff et al., 2007], including
use of gravimetric nitrate stand-
ards prepared at sea, and has
associated uncertainty (accu-
racy and precision) of 0.03 lmol
L21.

2.2. Underway fCO2 and O2/Ar
Measurements
Observations of surface CO2

fugacity (fCO2) and the ratio
between oxygen and argon (O2/
Ar) were made along the cruise
track using the ship’s underway
seawater supply (Figure 3). Sur-
face water fCO2 from an intake
roughly 5.5 m below the surface
was measured by continuous
flow equilibration (General Oce-
anics Inc., model 8050) [Pierrot
et al., 2009], via a nondispersive
infrared spectrometer (LiCor,
LI7000). The system was cali-
brated every 4 h with four
standards: a CO2-free air, and

three concentrations of CO2 (332.98, 394.49, and 425.15 ppm) in dry air on the WMO-X2007 mole fraction
scale. The fCO2 data were corrected to in situ water temperature and to 100% humidity following Pierrot
et al. [2009] and have an uncertainty of less than 62 latm based on field comparisons [K€ortzinger et al.,
2000].

The ratio of dissolved oxygen and argon (O2/Ar) was measured using a Pfeifer QMS200 quadrupole mass
spectrometer and equilibrator inlet [Cassar et al., 2009] with water from the same supply as the CO2 system.
The travel time between the intake and the CO2 and O2/Ar systems is less than 3 min, and warming is typi-
cally less than 0.58C.

2.3. Air-Sea CO2 Flux Computations
The air-sea CO2 flux was computed using the following equation:

F5kaDf CO2; (1)

where F is the flux (mmol m22 d21), k and a are the gas transfer coefficient and coefficient of solubility
[Weiss, 1974], respectively, and Df CO2 is the gradient in CO2 between the ocean and the atmosphere. The
gas transfer term was computed from the NCEP/NCAR wind speed reanalysis product [Kalnay et al., 1996]
and the parameterization of Wanninkhof [2014].

2.4. Partitioning of Seasonal Changes in TCO2

Seasonal depletions in mixed-layer TCO2 were estimated from the difference between (observed) summer
concentrations and an inferred winter concentration. For stations located to the north of the Ad�elie Sill (see
Figure 1, in blue), the winter concentrations were estimated from the observed TCO2 concentrations at the
depth of the temperature minimum [e.g., Ishii et al., 2002; Jones et al., 2011]. Because the temperature mini-
mum is not as well defined on the shelf, this method of defining the winter concentration may not be
appropriate in the marginal ice zone, where some of our stations are located [e.g., Shadwick et al., 2013a].
For our shelf stations, we therefore defined the winter TCO2 concentration by the observed value at a depth
of 150 m in shelf waters (mean of 2220 lmol kg21, standard deviation of 5 lmol kg21; see Figure 1, in red)
following Shadwick et al. [2014]; winter mixing on the shelf extends well below this depth [e.g., Williams and
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Figure 3. Frequency distributions of (a) fCO2 and (b) DO2/Ar in the survey region, with
2013 observations in waters north of the slope in blue, and over the shelf in red. All fre-
quencies have been normalized to a maximum value of 1 to facilitate comparison between
the two plots.
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Bindoff, 2003]. The winter TCO2 concentration for the slope stations was defined by the value at the temper-
ature minimum (mean of 2225 lmol kg21, standard deviation of 12 lmol kg21).

The TCO2 deficits result from the influence of both physical and biological processes: air-sea CO2 exchange,
mixing, photosynthesis and respiration, and the formation and dissolution of calcium carbonate all impact
surface deficits. The total deficit in TCO2 can be expressed as the sum of the contributing processes:

DTCOtotal
2 5DTCOsal

2 1DTCOalk
2 1DTCObio1gas

2 : (2)

The ‘‘total’’ deficit is integrated difference between observed summer and inferred winter concentra-
tions in the upper 100 m. The ‘‘sal’’ deficit is determined from the difference between observed and
salinity-normalized TCO2, where salinity normalization was done with an inferred winter salinity at
150 m for the shelf stations (34.35), and at the temperature minimum for the slope stations (34.45).
We assume that this term accounts for changes in TCO2 resulting from mixing with water masses of
different salinity whether these are due to horizontal and/or vertical processes. The ‘‘alk’’ term refers
to the impact of carbonate mineral formation or dissolution on TCO2. Because the precipitation or
dissolution of CaCO3 results in a 2:1 change in TA:TCO2, we estimate the ‘‘alk’’ term based on the AT
deficit, after accounting for changes in salinity and nitrate [e.g., Jones et al., 2011]. The remaining
‘‘bio 1 gas’’ term represents changes due to biological processes and gas exchange and are grouped
together.

2.5. Net Community Production Computations
The rate of net community production (NCP, the imbalance between net primary production and heterotro-
phic respiration) was estimated from underway measurements of O2/Ar. By assuming steady state and
neglecting vertical mixing, NCP was estimated via:

NCP � kO2 ½O2�satDðO2=ArÞ; (3)

where kO2 is the gas exchange velocity for oxygen, ½O2�sat is the O2 concentration at saturation, and
DðO2=ArÞ is the biologically mediated change in oxygen [Cassar et al., 2007]. Wind speed from the
NCEP/NCAR wind speed reanalysis product [Kalnay et al., 1996] and the parameterization of Wannink-
hof [2014] for long-term winds were used to compute kO2 . The weighting method of Reuer et al.
[2007] was used to account for the wind speed history prior to the arrival of the ship on station.
The net organic carbon production was determined from the oxygen derived NCP, using a photosyn-
thetic quotient of 1.4 [Laws, 1991; Bender et al., 1999]. The use of the O2/Ar-based estimated of NCP
in high latitude regions is complicated by a number of processes including: short-term temperature
changes, ice melt, and the entrainment of oxygen-poor subsurface waters [e.g., Castro-Morales et al.,
2013; Cassar et al., 2014; Eveleth et al., 2014; Shadwick et al., 2015]. In particular, the entrainment of
O2-poor water from below the surface would tend to underestimate NCP [Cassar et al., 2014], and
the NCP estimates using this method should therefore be considered minimum values. The method
nevertheless provides an alternative, shorter-term view of NCP compared to the conventional sea-
sonal carbon or nitrate deficit approaches described below.

An independent estimate of NCP was made from depth integrated (0–100 m) deficits of salinity-
normalized TCO2 (see previous section; the depth integration accounts for potential vertical redistri-
bution of TCO2 due to changes in mixed-layer depth over the productive season [e.g., Bates et al.,
1998]. The length of the productive season was defined as 60 days for the 2008, 2011, and 2012
data (collected in January) and 90 days for the 2013 data (collected in February), based on an onset
of primary production inferred from MODIS chl a concentration (via the Oregon State University
Ocean Productivity website).

The different time scales of the two methods hinder a direct comparison: the O2/Ar method integrates over
the length of time required to exchange oxygen between the mixed-layer and atmosphere (days to weeks),
while the TCO2 based estimate integrates over a number of months between the observations and the pre-
vious winter (i.e., over the entire productive season). However, because the brief period of open water pro-
ductivity dominates the seasonal cycle in this, and other high latitude systems [e.g., Roden et al., 2013;
Legge et al., 2017], the bias between the two methods is likely limited.
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3. Results

3.1. Hydrographic
Properties
The surface waters in the
study region were relatively
cool and fresh (Figures 4 and
5), with salinities ranging
from roughly 32.5 to 34.2 and
temperature generally below
1.58C but reaching a maxi-
mum 38C, and consistent with
Antarctic Surface Waters pre-
viously observed in this
region [Shadwick et al., 2014].
While the observations pre-
sented here were collected
on the shelf, and in waters
north of the continental
slope, we refer to two broad
regions, ‘‘shelf’’ defined as the
region south of 66.28S and
east of 146.98E, and ‘‘slope’’
defined as the region north
66.28S, and further parti-
tioned into slope waters
north of the Ad�elie Sill (west
of 1458E) and north of the
Mertz Sill (east of 1478E) for
analysis of surface water
properties in this and the sub-
sequent section (Figure 1).

Relatively cool, salty waters
were observed on the shelf,
and at the southern edge of
the slope region north of the
Ad�elie Sill. On the shelf,
where sea-ice formation has
long been associated with
the lee of the Mertz Glacier
and the Mertz Polynya, sur-
face waters were roughly

21.88C with a maximum surface salinity exceeding 34 (Figures 5a and 5b). In the northernmost slope region
waters with temperatures> 08C, likely resulting from the onshore intrusion of warm, saline, modified Cir-
cumpolar Deep Water (mCDW) were observed. There is a longitudinal gradient in the surface properties of
the slope waters with the most saline waters observed between 1408E and 1448E north of the Ad�elie Sill,
while the slope waters to the east (north of the Mertz Sill) were associated with a regional surface salinity
minima. A similar pattern in temperature was evident with the waters over the slope region north of the
Ad�elie Sill generally warmer than 08C, with much cooler surface waters observed north of the Mertz Sill (Fig-
ure 5).

The subsurface water properties indicate the presence of mCDW as well as modified shelf water (mSW). The
mSW results from mixing between dense shelf water (DSW), characterized by near-freezing temperatures
and salinity greater than 34.4 (Figures 4 and 6) and formed during sea ice formation, and mCDW. This mix-
ing occurs in transit from the shelf to the slope. Previous work in this region has shown that the DSW
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Figure 4. Surface (a) fCO2 and (b) DO2/Ar as a function of temperature and salinity in 2013.
Grey symbols correspond to subsurface data without associated underway observations.
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undergoes a biological modification on the shelf, and the outflowing mSW (which is a mixture of DSW and
mCDW) is depleted in TCO2 relative to inflowing CDW and mCDW [Shadwick et al., 2014]; the late-summer
observations presented here are consistent with this view.

3.2. Biogeochemical Surface Properties
The surface waters exhibit a distinct change in biogeochemical properties between the shelf and slope
regions. The underway data indicate that the high salinity and low temperature waters found on the shelf,
were associated with minimum values of fCO2 (Figure 5c), and maximum values of O2/Ar (Figure 5d). Waters
over the slope were associated with somewhat higher fCO2 and near zero, or negative values of O2/Ar. The
majority of the observations indicate supersaturation with respect to atmospheric CO2, with values in the
slope region ranging from near equilibrium (�390 latm) north of the Mertz Sill in the east, to roughly 400
latm at the northern edge. Consistent with the longitudinal gradient in hydrography, the surface waters in
the slope region north of the Ad�elie Sill indicate maximum fCO2 near 1408E and decrease to undersaturated
values (350–380 latm) in waters north of the Mertz Sill. By contrast the waters on the shelf indicate an
undersaturation of more than 100 latm, with values as low as 230 latm.

The O2/Ar observations indicate a similar spatial pattern with maximum values (�10% supersaturation),
indicating a net biological production of oxygen, or photosynthesis associated with regions of low fCO2 on
the shelf. By contrast the slope waters indicate values of net biological oxygen consumption, or respiration
(�5% undersaturation) in regions of maximum fCO2, and near neutral, or zero values of O2/Ar where the
fCO2 is roughly in equilibrium with the atmosphere in the slope region north of the Mertz Sill. The O2/Ar
observations alone do not allow us to attribute all negative signals to net respiration, or heterotrophy, due
to the influence of mixing. The correlation between elevated fCO2 and negative values of O2/Ar in the
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surface waters of the slope region north of the Ad�elie Sill, is likely a result of both local respiration in the sur-
face waters as well as the upward mixing of warm, saline, O2-poor and CO2-rich mCDW.

Wind speeds were fairly consistent throughout the period of observation (5–9 m/s) and we observed CO2

uptake in the surface waters over the shelf and outgassing in surface waters over the slope. Like the O2/Ar
observations, the spatial variation in the air-sea CO2 flux results from both physical and biological processes.
While there was ice present in the region at the time of observation (see Figure 2a), we have not attempted
to scale the fluxes presented here by the degree of ice cover, nor to integrate them to yield annual values,
but rather consider the estimates representative of the fluxes during the mostly open water, summer

Figure 6. Upper ocean profiles of CO2 system parameters in slope (blue) and shelf (red) waters collected in 2013. (a) TCO2 with salinity
inset; (b) AT with temperature inset; (c) salinity-normalized TCO2 (nTCO2); (d) salinity-normalized AT (nAT); (e) aragonite saturation state
(X); and (f) pH (on the seawater scale).
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season. Fluxes in the shelf region were
dominated by significant uptake rang-
ing from 230 to 25 mmol C m22 d21.
In the slope region north of the Ad�elie
Sill, there was modest uptake (�5 mmol
C m22 d21) at the southern edge, and a
transition to outgassing of up to 10
mmol C m22 d21 further offshore. By
contrast, the slope waters north of the
Mertz Sill indicate modest uptake of
atmospheric CO2 with fluxes on the
order of 25 to 210 mmol C22 d21.

3.3. CO2 System Properties
Profiles of TCO2 indicate near surface
depletions in both the shelf and slope
regions, with roughly the same surface
to deep gradient (Figure 6a); the surface
deficit results from a combination of
freshwater input from seasonal ice melt,
air-sea exchange, biological processes
and the formation and dissolution of

carbonate minerals (see also section 2.4). The near surface AT concentrations are more spatially distinct,
with values in the slope region up to 100 lmol kg21 lower than in the shelf waters (Figure 6b). Subsurface
concentrations indicate modest differences in TCO2 and AT between regions, with the slope waters showing
elevated concentrations relative to the shelf region in 200–600 m depth range that is associated with ele-
vated salinity for slope waters and temperatures between 0.5 and 18C. The subsurface concentrations of
TCO2 and AT are consistent with the characteristic concentrations of CDW, mCDW, and mSW previously
reported for this region [Shadwick et al., 2014] as well as those found elsewhere in East Antarctica [Roden
et al., 2016].

Normalizing to a constant salinity removes the effect of variable salinity on TCO2 and AT concentrations
(Figures 6c and 6d). In the shelf region concentrations of nTCO2 were between 20 and 50 lmol kg21 less
than mixed-layer concentrations in the slope region, while the subsurface concentrations of nTCO2 are simi-
lar and range from 2250 to 2280 lmol kg21. The opposite is seen in the nAT profiles: the near surface con-
centrations on the shelf were roughly 10 lmol kg21 higher than those on the slope. The subsurface
concentrations of nTCO2 in both regions ranged from 2250 to 2280 lmol kg21; subsurface nAT was similarly
consistent between regions with values between 2365 and 2375 lmol kg21.

Both the carbonate saturation state and the pH, computed from observations of TCO2 and AT, reflect differ-
ences in surface concentrations described above (Figures 6e and 6f). While the nTCO2 in the surface waters
on the shelf was more depleted than in waters on the slope, the nAT in shelf waters was also elevated. Both
the drawdown of TCO2 (via conversion of CO2 to organic matter during photosynthesis) and the production
of AT (potentially via dissolution of carbonate minerals in melting sea ice) contribute to enhanced saturation
states (1.6–1.8) observed in the surface waters on the shelf, which are influenced by the input of melting
sea ice in summer. This is in contrast to the weaker surface nTCO2 depletion and the absence of enhanced
surface nAT in the slope regions, resulting in surface saturation states of roughly 1.4. A similar enhancement
of surface pH (8.2) resulting from both the depletion of surface water TCO2 and the additional AT is
observed in the shelf region, in contrast to the slope region which had surface pH of roughly 8.1.

It has been shown that TCO2 may be more efficiently rejected than AT with brine during sea ice formation,
and that this may result in ratios of TCO2:AT in sea ice that differ from those in the underlying seawater [Rys-
gaard et al., 2007; Geilfus et al., 2012]. Several studies in both Arctic and Antarctic sea ice using both obser-
vations [e.g., Dieckmann et al., 2008; Geilfus et al., 2012] and models [Moreau et al., 2016] have shown that
carbonate mineral precipitation may have important implications for the AT concentration of the underlying
seawater and consequences for the so called sea ice carbonate pump. Earlier work in the Mertz Polynya
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region suggested that carbonate mineral processes did not significantly influence AT concentrations on the
shelf [Shadwick et al., 2014]; the present late-summer observations indicate that there may be a source of
AT to the surface waters on the shelf. Once corrected for the influence of changes in salinity (which we here
assume accounts for changes due to horizontal and vertical mixing), variations in nAT can be attributed to
photosynthesis/respiration and the formation/dissolution of CaCO3 since AT is insensitive to the air-sea
exchange of CO2. Computing potential alkalinity (pAT 5 AT 1 nitrate), following the definition of Brewer and
Goldman [1976] allows the changes in AT due to the assimilation of nitrate and the release of inorganic
nitrogen due to remineralization to be accounted for. These changes are small but allow the impact of pho-
tosynthesis (respiration) to be accounted for and changes due to carbonate mineral formation/dissolution
to be elucidated [e.g., Shadwick et al., 2014; Roden et al., 2016] (Figure 7).

4. Discussion

4.1. Partitioning Seasonal TCO2 Changes Across Physical and Biological Drivers
The seasonal TCO2 deficits in both slope and shelf waters (Figure 1) were partitioned into the contributing
physical and biological processes (Figure 8). While the total deficits of TCO2 were of similar magnitude in
the shelf and slope waters (Figure 8a), the contributions to the total seasonal change were distinct. The
TCO2 deficit in the slope waters is dominated by changes in salinity (Figure 8b); in this seasonally ice-
covered region, the perennial formation and melt of sea ice exerts a dominant control on the regional
hydrography, and subsequently the CO2 system properties. By contrast, on the shelf, changing salinity
accounted for less than half of the total TCO2 deficit (Figure 8b). Biological processes (and gas exchange)
made the largest contribution in the shelf waters, consistent with our observations of biological O2 satura-
tion (inferred from the O2/Ar data) being elevated on the shelf (Figure 5d). In slope waters, areas of biologi-
cal O2 undersaturation were observed, potentially resulting from respiration or remineralization of organic
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matter, here reflected in the negative or near neutral contribution of the ‘‘bio 1 gas’’ term in the TCO2 deficit
on the slope.

The shelf waters were also distinct in terms of the contribution from CaCO3 (inferred from the pAT, see Fig-
ure 7). On the shelf, we observed an elevated or excess nAT in the surface waters, reflecting a change in the
ratio of TCO2:AT consistent with the dissolution of CaCO3. It has been shown that when brine is expelled
from sea ice during formation, carbonate minerals may remain trapped in brine channels. The dissolution of
these minerals may lead to an excess of AT within the ice that may be released to the surface waters during
the spring and summer melt [Rysgaard et al., 2007, 2009]. The release of excess AT to the surface waters
may drive additional fCO2 undersaturation, and elevated X and pH. However, our conventional salinity nor-
malization assumes that sea ice melt water, the primary source of freshening in this system, makes a zero
contribution to alkalinity, which may not be the case [e.g., Jones et al., 2011].

To illustrate this point, we applied a normalization using a nonzero concentration of AT at zero salinity, here
referred to as ATresidual; the value of ATresidual was optimized to 700 lmol kg21 for observations from the
shelf stations by regression of AT and salinity data and estimated value of AT a salinity of zero. The surface
waters no longer indicate an excess AT signal in the near surface waters when the residual AT is included in
the normalization. Thus, it is possible that the meltwater influencing the (eastern) shelf stations has a resid-
ual alkalinity that is not accounted for with the traditional normalization. It is also likely that the residual
alkalinity can vary with location, and so the freshwater input to the shelf stations differs from the freshwater
input to the stations in the slope region further to the west.

Our observations on the shelf suggest that in addition to a biologically mediated fCO2 undersaturation,
there is a contribution from excess or residual AT in the surface waters, which may either be associated with
CaCO3 dissolution via the sea ice carbon pump, or the addition of meltwater with nonzero (residual) AT.
Without an improved characterization of the AT (and TCO2) in sea ice, neither process can be ruled out with
the observations presented here, and while not negligible, these processes do make a small contribution to
the overall change in TCO2 (Figure 8d).

In the slope waters we observed a modest positive contribution of CaCO3 to the total TCO2 deficit. This
would indicate the formation of CaCO3 or a loss of AT. Previous work in this region has suggested that the
waters in the slope region broadly indicate mixing between two end-members, with saline and CO2-rich
CDW (and mCDW) mixing with fresher, more CO2 depleted waters that have been modified on the shelf
[Shadwick et al., 2014]. The 2:1 ratio between AT and TCO2 in the slope waters has previously been attrib-
uted to formation and dissolution of CaCO3 in the CDW rather than to local processes. While the southern-
most stations on the slope had freezing, or near-freezing surface temperatures, these waters were also
associated with negative values of O2/Ar and undersaturated with respect to atmospheric CO2, which would
indicate the upward mixing of CDW rather than local precipitation of CaCO3 via sea ice formation.

4.2. Interannual Variability in CO2 System Properties
Observations from 2013 show that the surface waters on the Mertz shelf remain depleted in TCO2 in the
late-summer season, and mixed-layer TCO2 concentrations were more similar to the post-MGT calving con-
ditions of 2011 than the pre-MGT calving conditions of 2008 (see Table 1). Relatively fewer observations
from 2012 also show surface TCO2 depletion and enhanced carbonate saturation states (X roughly 2.1),
with values exceeding the 2011 observations. In all three postcalving summers (2011, 2012, and 2013),

Table 1. Mixed-Layer Properties on the Shelf in 2008, 2011, 2012, and 2013a

2008 2011 2012 2013

T 21.01 20.92 21.02 21.78
S 34.344 33.589 33.996 34.004
TCO2 2170 (18) 2107 (20) 2109 (20) 2159 (25)
AT 2320 (15) 2280 (18) 2313 (15) 2315 (10)
X 1.51 1.9 2.1 1.7
pH 8.10 8.2 8.28 8.18

aSampling occurred in January in 2008, 2011, and 2012, and in February 2013. Temperature (T) is in 8C and salinity (S) is in kg m23.
The number of stations sampled for CO2 system properties was n2008 5 47; n2011 5 45; n2012 5 9; and n2013 5 9. The mean values of
TCO2 and TA (in lmol kg21, with standard deviation in parentheses) were used to compute the pH and saturation state, X.
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mixed-layer depths were shallow relative to conditions in 2008, and to a lesser extent to observations in
2001 (see Table 1).

When comparing observations from the shelf between 2008 (pre-MGT calving) and 2011 (post-MGT calv-
ing), Shadwick et al. [2013a] reported an enhancement in surface saturation state and pH which was attrib-
uted to increased biological production. The mixed-layer TCO2 depletion in 2011 was significantly
enhanced relative to 2008. Furthermore, in the relatively lower salinity waters of the 2011 mixed layer, the
biological enhancement of saturation state significantly outweighed the decrease due to dilution. This is in
contrast to observations in the Arctic Ocean, which have linked sea ice meltwater with surface freshening
and depressed saturation states [e.g., Yamamoto-Kawai et al., 2009; Mathis et al., 2011; Yamamoto-Kawai
et al., 2011], but in broad agreement with recent studies of coastal systems in the West Antarctic Peninsula
region [Hauri et al., 2015; Jones et al., 2017]. If sea ice melt is associated with a source of dissolved iron (Fe)
to the surface waters, this may stimulate biological productivity under otherwise Fe-limited conditions,
which are common in the open Southern Ocean and occur seasonally in the marginal ice zone [e.g., Sam-
brotto et al., 2003; de Jong et al., 2013]. An increase in sea ice melt may therefore drive a localized negative
feedback to ocean acidification in coastal Antarctic waters in the short term through fertilization of the sur-
face waters [Shadwick et al., 2013b].

While it may be possible to attribute the apparent continued enhancement in biological activity in the years
following the MGT calving to changes in the physical system, or icescape, we note that the natural interan-
nual variability in CO2 system properties in this region, as in other coastal Antarctic settings [e.g., Roden
et al., 2013; Legge et al., 2017], is likely to be large. However, an emerging understanding of the region indi-
cates that the surface waters over the narrow continental shelf are biologically productive in the open water
season and this appears to exert a dominant influence on the CO2 system seasonality. The postcalving con-
figuration of the polynya may favor enhanced surface TCO2 depletions in the shelf waters, which is dis-
cussed in more detail below.

4.3. Interannual Variability in NCP
The productive season was well underway in January (2008, 2011, and 2012) and February (2013), inferred
from remote sensing products that indicate elevated surface chlorophyll a concentrations in the months
leading up to the period of observation. In 2008, 2011, and 2012, there is good agreement between the
(independent) nTCO2-based and DO2/Ar-based estimates of NCP (Table 2). Considering that the nTCO2-
based NCP integrates the mixed-layer carbon utilization from the beginning of the productive season, while
the O2/Ar method yields values from the preceding weeks only, the similarity between the two at the time
of sampling in January suggests that the early spring production makes a relatively small contribution to
seasonal NCP. The 2013 observations during February support this idea, since the nTCO2-based estimates,
which integrate over the spring and summer seasons and thus include contributions from the onset of pro-
duction to February, are larger than the O2/Ar-based estimates which reflect the lower productivity in Feb-
ruary (Figure 9 and Table 2).

Observations in 2013 indicated daily rates of NCP from 30 to 80 mmol C m22 d21 associated mainly with
waters over the continental shelf break, and net autotrophic conditions extending into February in waters
east of the MGT (Figures 5d and 9). In the pre-MGT calving summer of 2008, the surface waters in the region
indicated relatively homogenous distributions of modest biological oxygen supersaturation, and net auto-
trophic conditions with NCP on the order of 10 mmol C m22 d21 (Table 2). The maximum rates of NCP (�15
mmol C m22 d21) were associated with the continental shelf break, at roughly 1468E (Figure 2b). In the first

post-MGT calving summer of
2011 a region of very high
NCP (�100 mmol C m22 d21,
Figure 9) was observed east of
the former position of the
MGT between 1468E and
1488E [Shadwick et al., 2013a].
Daily rates of NCP were also
large (30 and 80 mmol C m22

d21) northwest of the

Table 2. Estimates of NCP (mmol C m22 d21) in Shelf Waters Based on nTCO2 Deficits
(DTCO2) and DO2/Ara

Year (Month) nTCO2 DO2/Ar MLD

2001 (Jan) 11–19 37
2008 (Jan) 13–27 9–15 61
2011 (Jan) 25–78 35–90 28
2012 (Jan) 35–76 45–90 25
2013 (Feb) 26–70 25–50 30

aThe 2001 estimate is based on the nitrate deficit reported by Sambrotto et al. [2003]
and converted to units of carbon using a ratio of C:N 5 106:16.
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grounded iceberg B09b in the
vicinity of the Ad�elie depres-
sion (Figure 2c). In the second
post-MGT calving summer of
2012, the highest rates of NCP
(�100 mmol C m22 d21) were
observed just north of the
Mertz Glacier Tongue (Figure
2c), and rates between 60 and
80 mmol C m22 d21, Figure 9)
were observed in waters over
the continental shelf break,
and in the region directly north
of the fragments of iceberg
B09b which had partially disin-
tegrated (Figure 2d).

NCP was considerably lower in
2008 than 2011, 2012, and

2013, though of similar magnitude as in 2001. The mean postcalving rates of NCP estimated from seasonal
nTCO2 deficits is 47 mmol C m22 d21, which suggests a more than two-fold increase relative to the mean
precalving estimate, based on observations in 2001 and 2008 (Table 2) [Sambrotto et al., 2003; Shadwick
et al., 2013a]. Particularly high rates of NCP were observed in 2011 and 2012 east of the former position of
the MGT. As described above, in 2011, 2012, and 2013, elevated rates of NCP were observed south of
roughly 668S, in relatively shallow waters (<500 m) over the continental shelf, where the proximity to the
sediments and the supply of melt water from the receding ice edge may supply iron to the surface waters
and promote primary production [e.g., Sambrotto et al., 2003; de Jong et al., 2013].

The maximum rate of NCP in 2012 was 120 mmol C m22 d21, near the edge of the MGT, and near the frag-
ments of iceberg B9B, in both cases in the vicinity of small ice floes. Using a range of iron (Fe) to carbon
ratios from 36 to 100 Fe:C [de Baar et al., 2008] (Fe:C 5 lmol:mol), the amount of dissolved Fe needed to
sustain the maximum observed NCP ranges from 4.3 to 12 lmol Fe m22 d21. Applying an estimated flux of
dissolved Fe from East Antarctic sea ice of 0.03–1.5 lmol Fe m22 d21 [Lannuzel et al., 2007], the delivery of
Fe from the sea ice would require a (daily) melt of �3 to 400 m2 of ice. A large input of sea ice melt water in
2011 was reported by Shadwick et al. [2013a], and in the subsequent years, the absence of the MGT has
likely allowed the westward drift of sea ice into the region. Thus, it is possible that the continued input of
sea ice melt water in 2012 and 2013 contributed to the observed enhanced production through delivery of
dissolved Fe and/or improved light conditions due to the shallow, fresh, mixed layer. While polynyas are
thought to be regions of enhanced primary productivity due to the associated areas of open water, the
overall reduction in the size of the Mertz Polynya has resulted in an increase in local NCP due to a reconfigu-
ration of the icescape and possibly the additional input of macronutrients to the surface waters.

5. Conclusion

The dramatic changes to the physical environment or icescape in the Mertz Polynya precipitated by the
movement of iceberg B09b and subsequent calving of the Mertz Glacier Tongue continue to influence the
summer hydrography and biogeochemistry of the region 3 years later. The nearshore region east of Com-
monwealth Bay remains largely free of ice in the summer season and the narrow continental shelf is biolog-
ically productive and exhibits surface water undersaturation with respect to atmospheric CO2. Late-summer
observations in 2013 indicate that sea ice meltwater may provide a source of alkalinity, which contributes
to the enhancement of carbonate saturation state and pH in the surface waters, which are also strongly
influenced by organic matter production. Summer observations allow estimates of seasonal net community
production to be made and yield an improved understanding of recent changes in the physical environ-
ment with respect to short-term biogeochemical impacts. The shelf waters to the east of Commonwealth
Bay appear to have shifted towards enhanced surface carbonate saturation state and TCO2 depletion largely
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driven by biological processes which extend late into the summer season. Understanding the vulnerability
of the system to future change, both natural (i.e., the growth and calving of the Mertz Glacier Tongue) and
anthropogenic (i.e., increased atmospheric CO2 and subsequent changes to the carbonate chemistry)
change requires quantification of the drivers of variability outside of the productive season.
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