75 research outputs found

    The sintering behavior of close-packed spheres

    Get PDF
    The sintering behavior and microstructural evolution of a powder compact is influenced strongly by initial properties, such as the relative density, the particle and pore size distribution, and the powder packing. While the influence of the former parameters on the microstructural evolution has been investigated in some detail, the impact of the initial packing of the powder has been mostly overlooked. However, research has shown that the sintering behavior of a powder can be significantly improved if the powder is regularly packed. This has been shown for monodisperse spherical TiO2 particles [1], which sintered 10 times faster and exhibited almost no grain growth compared to ordinary TiO2. Similar observations has been made for homogeneously packed Al2O3 [2], SiO2 [3], as well as a number of other materials [4]. Monodispersed spherical TiO2 particles have been shown to order in face-centered cubic (fcc) arrays, while the SiO2 powder forms stacked planes of hexagonal close-packed (hcp) particles. Close packing of monodispersed silica has also been observed [5]. Sintering of two-dimensional close packing cylinders has also been demonstrated experimentally [6–8] and numerically modeled [9,10], and the sintering of particle clusters in three dimensions has also been studied [11]

    Strain in the mesoscale kinetic Monte Carlo model for sintering

    Get PDF
    Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate densification by vacancy annihilation removes an isolated pore site at a grain boundary and collapses a column of sites extending from the vacancy to the surface of sintering compact, through the center of mass of the nearest grain. Using this algorithm, the existing published kMC models are shown to produce anisotropic strains for homogeneous powder compacts with aspect ratios different from unity. It is shown that the line direction biases shrinkage strains in proportion the compact dimension aspect ratios. A new algorithm that corrects this bias in strains is proposed; the direction for collapsing the column is determined by choosing a random sample face and subsequently a random point on that face as the end point for an annihilation path with equal probabilities. This algorithm is mathematically and experimentally shown to result in isotropic strains for all samples regardless of their dimensions. Finally, the microstructural evolution is shown to be similar for the new and old annihilation algorithms.Comment: 6 pages, 6 figure

    Fabrication of Net-Shape Functionally Graded Composites by Electrophoretic Deposition and Sintering: Modeling and Experimentation

    Get PDF
    It is shown that electrophoretic deposition (EPD) sintering is a technological sequence that is capable of producing net-shape bulk functionally graded materials (FGM). By controlling the shape of the deposition electrode, components of complex shapes can be obtained. To enable sintering net-shape capabilities, a novel optimization algorithm and procedure for the fabrication of net-shape functionally graded composites by EPD and sintering has been developed. The initial shape of the green specimen produced by EPD is designed in such a way that the required final shape is achieved after sintering-imposed distortions. The optimization is based on a special innovative iteration procedure that is derived from the solution of the inverse sintering problem: the sintering process is modeled in the “backward movie” regime using the continuum theory of sintering incorporated into a finite-element code. The experiments verifying the modeling approach include the synthesis by EPD of Al2O3/ZrO2 3-D (FGM) structures. In order to consolidate green parts shaped by EPD, post-EPD sintering is used. The fabricated deposits are characterized by optical and scanning electron microscopy. The experimentally observed shape change of the FGM specimen obtained by EPD and sintering is compared with theoretical predictions

    SIMULATION OF SINTERING OF LAYERED STRUCTURES

    Get PDF
    Abstract -An integrated approach, combining the continuum theory of sintering and Potts model based mesostructure evolution analysis, is used to solve the problem of hi-layered structure sintering. Two types of hi-layered structures are considered: layers of the same material with different initial porosity, and layers of two different materials. The effective sintering stress for the hi-layer powder sintering is derived, both at the meso-and the macroscopic levels. Macroscopic shape distortions and spatial distributions of porosity are determined as functions of the dimensionless specific time of sintering. The effect of the thickness of the layers on shrinkage, warpage, and pore-grain structure is studied. Ceramic ZnO powders are employed as a model experimental system to assess the model predictions.

    Four electrons in a two-leg Hubbard ladder: exact ground states

    Full text link
    In the case of a two-leg Hubbard ladder we present a procedure which allows the exact deduction of the ground state for the four particle problem in arbitrary large lattice system, in a tractable manner, which involves only a reduced Hilbert space region containing the ground state. In the presented case, the method leads to nine analytic, linear, and coupled equations providing the ground state. The procedure which is applicable to few particle problems and other systems as well is based on an r-space representation of the wave functions and construction of symmetry adapted orthogonal basis wave vectors describing the Hilbert space region containing the ground state. Once the ground state is deduced, a complete quantum mechanical characterization of the studied state can be given. Since the analytic structure of the ground state becomes visible during the use of the method, its importance is not reduced only to the understanding of theoretical aspects connected to exact descriptions or potential numerical approximation scheme developments, but is relevant as well for a large number of potential technological application possibilities placed between nano-devices and quantum calculations, where the few particle behavior and deep understanding are important key aspects to know.Comment: 19 pages, 5 figure
    corecore