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Abstract

A phase-field model for grain growth is briefly described. In this model, a poly-
crystalline microstructure is represented bymultiple structural order parameter fields
whose temporal and spatial evolutions follow the time-dependent Ginzburg-Landau
(TDGL) equations. Results from phase-field simulations of two-dimensional (2D)
grain growth will besummarized andpreHminary results on three-dimensional (3D)
grain growth will be presented. The physical interpretation of the structural order
parameter fields and the efficient and accurate semi-implicit Fourier spectral method
for solving the TDGL equations will be briefly discussed.
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1 Introduction
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Computer simulation is playing an increasingly important role in the fundamental under-
standing of grain growth because of its ability to incorporate various levels of complexity

and different types of physical processes involved in a grain growth. Many modeling ap-

proaches for grain growth have been proposed in the last decade or so. These include
statistical models [1, 2, 3], vortex models [4], boundary dynamics models [5, 61, mean field

models [7, 8, 9], Voronoi models [10, 11], the Potts model [12, 13, 14], the Surface Evolver
[15], the Laguerre model [16, 17, 18], and models based on variational principles [19]. In

spite of the different physical bases and approaches employed in these models, a common

feature is the approximation of boundaries or interfaces as mathematically abstract sharp
interfaces, and simulation of the grain growth process involves the explicit tracking of the
interracial positions, an exception being the Potts model.

Recently, we developed a phase-field model for studying grain growth kinetics in single-

phase [20, 21, 22, 23] and two-phase materials [24, 25, 26, 27, 28]. In this model, a polycrys-
talline microstructure is represented by non-conserved multiple structural order parameter

fields whose values are proportional to the structural amplitudes in the reciprocal space
[29]. The free energy density of a grain is then formulated as a Landau expansion in terms
of the structural order parameters. The grain boundary energy is introduced through the

gradients of the structural order parameters. The anisotropy in grain boundary energy and
mobility can be incorporated by taking into account the underlying crystalline symmetry
of the grains in the free energy density function and in the gradient terms [29, 30]. The
temporal and spatial evolution of the structural order parameters follow the time-dependent
Ginzburg-Landau (TDGL) or Allen-Cahn equations [31] which can be solved using various
numerical techniques such as finite-difference, finite-element, or spectral methods. One of

the main features of the phase-field model is the fact that one does not have to explicitly
track the interfaces since their are implicitly defined by the level set of the structural order
parameter fields. Another distinct advantage of the phas~field model is the natural incor-
poration of long-range diffusion, which takes place, for example, during solute segregation
at grain boundaries, by coupling the TDGL equations with the Cahn-Hilliard non-linear

diffusion equation [32] for composition.

There have been many other applications of the phase-field model to modeling mi-
crostructural evolution during phase transformations and subsequent coarsening processes
(see [33] for a brief overview).

The objective of this paper is to give a brief account on the theoretical background
underlying the phase-field model for grain growth, and to give a brief summary on phase-
field simulation results of 2D grain growth in pure systems.

2 Phase-Field Model

2.1 Representation of a Grain Structure

To understand the physical reasoning behind the phase-field representation of a microstruc-
ture, let us examine a pure solid on a simple 2D square lattice. The X-ray diffraction pattern
of such a single crystal is schematically shown’ in Fig. 1 (left). The diffraction intensity, ~H,
is proportional to the square of the structural amplitude at a given point in the reciprocal
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. space,@H . In principle, if we know all the structural amplitudes, we have the information
about the atomic structure of the crystal, i.e.

p(r) = ~(r) + ~ @H(r) exp(i2~H . r)
H

where p(r) is the single-site occupation probabil-

ity function, p(r) is the average local density, H
the reciprocal-lattice vector corresponding to the
Bravais lattice of the crystal, and @~(r) the lo-
cal structural amplitudes. According to equation

(l), the structural amplitudes play the same roles

as long-range order (LRO) parameters which dis-
tinguish a liquid and a solid [29]. Since there are

an infinite number of LRO parameters in equation

(l), such a representation is hardly useful in mi-
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Figure 1: The schematic diffraction patterns
of a square single-crystal (left) and a corre-
sponding polycrystalline microstructure (right)

crostructural modeling. If we assume that the relation among the amplitudes @K(r) are

fixed at all times during a microstructural evolution, i.e.

@K(r) = q(r)T(H) (2)

where ~(r) is the LRO parameter which describes the crystallinity in a given region, and

T’(H) are the constants completely determined by the symmetry in the equilibrium crys-

talline state. With the assumption given by equation (2), we may reduce equation (1) to a
single-order parameter description, i.e.

[
p(r) = p(r) + q(r) ~ T(H)exp(i2nH. r)

H 1
For a given crystal structure, the sum in the square bracket in
equation (3) is fixed and assumed to be independent of time in
our isotropic phase-model for grain growth. Although, a mul-
ticomponent order parameter is necessary in order to describe

the interracial energy anisotropy more physically [29], for the
case of isotropic interracial energies, the single LRO parameter
description is sufficient.

The corresponding diffraction pattern of a polycrystalline
grain structure is schematically shown in Fig. 1(right). We can
write down an approximate expression for the single-site occu-
pation probability density function for the polycrystalline state
using the single LRO description,

i=Q r

(3)
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Figure 2: The schematic
represent ation of a grain
structure
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where Q is the number of tryst allograph c orientations of grains in a microstructure, Hi the
reciprocal lattice vector corresponding to the ith tryst allographic orientation, and Vi(r) the

LRO parameter representing the crystallinity with the ith orientation at position r. As-
suming homogeneous average local density, a schematic representation of a grain structure
using the field LRO parameters is given in Fig. 2. Within a given grain, only one LRO
parameter has a finite value while all others are zero.



2.2 Free Energy of a Grain Structure

Based on the representation discussed in the last section, the total free energy of a grain
structure can be represented in a Ginzburg-Landau form as

/[ I~=, .fLxal({%(r)})+ ;~ 2 V’Vi(r)~’ri
(5)

where the local part of the free energy, ~lOcaican be expressed as a Landau expansion in
terms of the LRO parameters qi, and K is the gradient energy coefficient. In expression (5),

isotropic interracial energy is implicitly assumed. For a more detailed discussion on the free
energy formulation, including the introduction of anisotropic interracial energies, please see
reference [29] and [30]

2.3 Evolution Equations for LRO Parameters

For modeling grain structure evolution, the LRO parameters are not only space-dependent

but also time-dependent. Assuming that the average local density is uniform, the LRO pa-
rameters are non-conserved fields whose evolution follows the traditional Ginzburg-Landau
equation or Allen-Cahn equation,

aqi

()

._L g

& ($?)~
(6)

where L is a kinetic coefficient related to interface mobility, t is time, 1 < i < Q, and

&F ~fioc.1 ~vzqi
— .—=

Jqi aqi (7)

In a grain growth simulation, the systems of equations (6) are numerically solved.

2.4 Sharp-Interface Limit

To relate the kinetic coefficient L and the gradient energy coefficient K to familiar quanti-

ties controlling grain growth such as grain boundary energy and mobility, let us examine
the correspondent sharp-interface limit of the phasefield equations for the simple case of
a circular grain in 2D and a spherical grain in 3D embedded in another grain. In the con-
ventional theory, it is easy to show that the radius of a circular or a spherical grain, R, will
decease according to

R’– R:= ‘2&@/g@ for a circular grain
‘4~@’)’g&t for a spherical grain

(8)

where R. is the radius of a circle or a sphere at t = O. In the limit that the radius of the
circle is much larger than the interracial thickness, the corresponding equations from the
TDGL equation are

R2 – R: = –2LKt for a circular grain
–4Lid for a spherical grain

(9)

Therefore, the term, ~gb~~~~ in the conventional grain growth theory is modeled by the
product of kinetic coefficient L and the gradient energy coefficient K in phase-field simula-
tions.
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2.5 Numerical Solution to Evolution Equation

The simplest technique to solve the phase-field equations is to combine the explicit forward

Euler method in time and the finite-difference method in space. For example, in 2D, the

Laplacian operator in (7) at a given time step n is usually discretized by using a second-order

five-point finite-difference approximation,

(lo)

where h = Ax is the spatial grid size and j represents the set of first nearest neighbors of

i in a square grid. The explicit Euler finite-difference scheme can then be written as

%+1 = q; + Af [(~(qn))i + v;v;] (11)

where A-t is the time step size. The above scheme is the most often used scheme in numerical

simulations of the TDGL or Cahn-Hilliard equations. However, to maintain the stability
and to achieve high accuracy for the solutions, the time step and spatial grid size have to

be very small, which seriously limits the system size and time duration of a simulation.

Recently, Chen and Shen developed an accurate and efficient semi-implicit Fourier-spectral
method for solving the phas~field equations [34]. For instance, a second-order backward
difference (BDF) for $ij and a second-order Adams-Bashforth (AB) for the explicit treat-

ment of nonlinear term lead to the following second-order B DF/AB scheme:

(3+ 2Aik2)ij”+’(k) = 4fi”(k) - ij”-’(k) + 2At [2{:(777}, - {f(qn-’)}~] . (12)

where k = (Ic1,k2) is a vector in the Fourier space, k = ~m- is the magnitude of k,

fi(k, t) and {~(~)}k represent the Fourier transforms of q(x, t) and ~(q), respectively. Spec-

tral methods are widely used in fluid dynamics [35]. Due to the exponential convergence
of the Fourier-spectral discretization for the space-derivatives, this method requires a sig-

nificantly smaller number of grid points to resolve the solution to within a high prescribed
accuracy than the convent ional finite-difference method. The second-order semi-implicit

treatment in time enables one to use considerably larger time step size while maintain-
ing stability. Another potentially powerful numerical technique to solve the phase-field
equations is to use the adaptive grid method [36].

3 Grain Growth Simulations

3.1 Local free energy density function

For the purpose of modeling grain growth in a pure system,
local free energy density function [20, 21, 22, 23]

we assume the following simple

QQ

C-ZD?3?: (13)
‘&l j#i

number of grain orientations inwhere A, B, and C are positive constants. Q represents the

a grain structure. Although the exact form of the free energy density function is important



.,
in describing the thermodynamic nature of a liquid~solid transformation, it is not very “

important for the motion of grain boundaries as one can see from equation (9). It may be

shown that if C > ~, the local free energy function (13) has 2Q minima located at

(ql, q2, ””” ,~Q)=(l, o,”’ ”,o), @,l, ”””, o),. ... (o, o,” .“,l), etc.

In modeling grain growth, each of the 2Q minima represents a specific crystallographic
orientation of grains.

3.2 Migration of a spherical grain boundary

To check the accuracies of the numerical solutions
of the phase-field equations, we studied the migra-

tion of a spherical grain boundary by choosing the
following numerical values: A = 1.O,B = 1.0,(7 =
1.O,K = 2.0,.L = 1.0. The TDGL phase-field equa-

tions were solved using the second-order semi-implicit
Fourier-Spectral method (SIFSM2nd) with Ax = 2.0
and At = 0.5. The dependence of the grain radius

squared vs. t is plotted in Fig. 4 which shows a
linear dependence, in agreement with the prediction
from conventional theories on curvature-driven grain
boundary migration. The analytical solution (equa-

10000

8000

6000

~z

4000

2000

0
0 200 400 600 800 1000 1200

time

tion (9)) obtained by assuming that the grain radius Figure 3: Dependence of B2 on time t

is much larger than the boundary thickness is also where R is the radius of a SPheriCal grain

shown in Fig. 4. It appears that with an accurate

numerical technique, the grain boundary migration kinetics obtained in a numerical simu-
lation can match very well with the analytical solution on the sharp-interface limit (error
in the slope % 0.0470).

3.3 2D grain growth

We have performed extensive simulations on 2D grain growth using the continuum phase-
field model[20, 21, 22, 23]. We have applied both the finite-difference forward Euler tech-
nique and the second-order semi-implicit Fourier-spectral method. The two numerical tech-
niques produced very similar results on the microstructure, the growth exponent, the parti-
cle size and topological distributions, but quite different values for the rate constants in the

grain growth law due to their differences in the numerical accuracies. Assuming A = 1.0,
1? = 1.0, C = 1.0, K = 2.0, L = 1.0, Ax = 2.0, At = 0.25 and periodic boundary conditions,
an example of microst ructural evolution obtained from a finite-difference method is shown
in Fig. 4. The computational cell size is 512 x 512 and Q = 36. The initial condition is
specified by assigning small random values to all field variables at every grid point, e.g.,

–0.001 < qi <0.001, simulating a liquid. The gray-levels represent the value of ~f?_l q:
with black and white corresponding to low and high values respectively.

Due to the limitation on the manuscript length, we will summarize our main results on 2D
grain growth obtained from the continuum phase-field model[22, 23]:

● Grain growth in 2D follows the growth law, Rm – ~ = kt with the exponent m = 2
and independent of Q. Recently, Mullins [37] introduced a constant ~ in his curvature-
driven grain growth model with uniform boundaries as defined in R2–l?j = 2~M~b7~#.
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Figure4: Temporal microstructural evolution during a2Dgrain growth obtained using the
phase-field model with 512x 512grid points andQ=36

The /3 values obtained in our phase-field simulations using the Semi-Implicit Fourier-

Spectral method are listed in Table 1. In our phase-field simulations, it is shown
that the value of ~ depends on Q at small Q, and it is around 0.19 – 0.20 at large

Q appropriate for grain growth. A similar value for /? was found in Potts model
simulations of 2D grain growth [38]. A more detailed test of Mullins’ theory using

the continuum phase-field model will be published elsewhere.

Table 1. The constant B in Mullins’ theory as a function of (J

●

●

●

●

●

●

●

Q 18 36 54” 72 90 ’108 144 180-

/3 0.289 0.240 0.229 0.211 0.194 0.194 0.196 0.205

The grain size distributions obtained in our 2-D simulation are shown to fit reasonably
well to the Louat’s function [39], F(z) = 2ax exp(—a~2), where x = log(~) and a is

an adjustable parameter, but not as well to the log-normal distribution, F’(x) =

*exp ( 2.2 )
= , where XO is the mean of ~, and ~ is the standard deviation of

the distribution.

Mullins-Von Neumann law [40, 41],% cx (n — 6), is found to hold on the average.

Contrary to the general belief that 4- and 5-sided grains have to transform to 3-
sided before their disappearance in 2-D grain growth, phase-field simulations show

evidence that 4-sided and 5-sided grains may transform to a disordered region and
directly vanish.

The shape distribution is time-invariant and the peak is found at n = 5, where
n is number of sides, consistent with experimental results [42, 14] and Potts model
simulations [13, 14], but different from the simulations based on the mean field theories
[42, 7] which predicted the peak at n =6.

The second moment of the shape distribution = 2.3 – 2.4 is close to that obtained in
Potts model simulations [14] and metallic films [42].

The correlation between the number of sides n of a grain and the average sides of its
neighbors, m(n) is found to obey the Aboav-Weaire law [43, 44], m(n) = 6 —a + W
where p2 is the second moment of the side distribution and a is a constant with its
value close to unity.

Although the phase-field simulation results do not follow the Lewis law [45],(An) =
a(n – ;.) where (An) is the average area of n-sided grains at a given time,’ a and
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nO are constants dependent on the properties of the grain structu;e, but’ the data fit “ “

quite well to the Feltham law [46], (R.) = a’(n – n:) where (1?.) is the average grain

radius of n-sided grains, and a’ and n: are constants.

3.4 31) grain growth

We have carried out preliminary 3D grain growth simulations using the continuum phase-
field model. We employed the same set of parameters as 2D simulations and solved the
evolution equations using a finite-difference method with a grid size Ax = 2.0 and a time
step At = 0.2. An example of microstructural evolution obtained 2D cuts of 3D simulated
grain structures is shown in Fig. 5. The computational cell size is 128 x 128 x 128 and

Q = 54. The initial condition for the structural LRO parameter fields corresponds to
a liquid. Therefore, the initial stage during the annealing involves crystallization of a
quenched liquid. The microstructure at t = 20 is actually a partially crystallized solid-
liquid two-phase mixture. After the system is fully crystallized, grain growth takes place,

resulting in the increase in grain size. The average area as a function of time obtained
from the 2D cross-sections during grain growth is plotted in Fig. 6, which also shows a
linear relationship as in 2D. Therefore, grain growth in 2D and 3D appear to have the same
growth exponent. The detailed comparisons between results obtained from 2D simulations
and those obtained from 2D cross-sections of 3D microstructure will be presented elsewhere
due to space limitations.

t=20 t=40 t=60 t = 200

Figure 5: Temporal evolution on 2D cross-sections of 3D grain structures obtained using

the phase-field model with 128 x 128 x 128 grid points and Q = 54.
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Figure 6: The average area as

a function of time obtained from
2D cross-sections of 3D simulated

grain structures using the contin-
uum phase-field model
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--* 4 Summary

It is shown that the continuum phase-field model is based on a rather solid physical back-

ground and is a powerful simulation tool for studying grain growth. The results briefly

discussed in the paper are all concerned with grain growth in pure systems. The real

power of the phase-field model is its ability to incorporate the long-range diffusion in a
rather natural way, and hence it is particularly suitable for studying diffusion-controlled
microstructural evolution processes (see for example, [24, 25, 26, 27, 28]).
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