38 research outputs found

    Spatial, temporal and source contribution assessments of black carbon over the northern interior of South Africa

    Get PDF
    After carbon dioxide (CO2) aerosol black carbon (BC) is considered to be the second most important contributor to global warming. This paper presents equivalent black carbon (eBC) (derived from an optical absorption method) data collected from three sites in the interior of South Africa where continuous measurements were conducted, i.e. Elandsfontein, Welgegund and Marikana, as well elemental carbon (EC) (determined by evolved carbon method) data at five sites where samples were collected once a month on a filter and analysed offline, i.e. Louis Trichardt, Skukuza, Vaal Triangle, Amersfoort and Botsalano. Analyses of eBC and EC spatial mass concentration patterns across the eight sites indicate that the mass concentrations in the South African interior are in general higher than what has been reported for the developed world and that different sources are likely to influence different sites. The mean eBC or EC mass concentrations for the background sites (Welgegund, Louis Trichardt, Skukuza, Botsalano) and sites influenced by industrial activities and/or nearby settlements (Elandsfontein, Marikana, Vaal Triangle and Amersfoort) ranged between 0.7 and 1.1, and 1.3 and 1.4 ae gm 3, respectively. Similar seasonal patterns were observed at all three sites where continuous measurement data were collected (Elandsfontein, Marikana and Welgegund), with the highest eBC mass concentrations measured from June to October, indicating contributions from household combustion in the cold winter months (June-August), as well as savannah and grassland fires during the dry season (May to mid-October). Diurnal patterns of eBC at Elandsfontein, Marikana and Welgegund indicated maximum concentrations in the early mornings and late evenings, and minima during daytime. From the patterns it could be deduced that for Marikana and Welgegund, household combustion, as well as savannah and grassland fires, were the most significant sources, respectively. Possible contributing sources were explored in greater detail for Elandsfontein, with five main sources being identified as coal-fired power stations, pyrometallurgical smelters, traffic, household combustion, as well as savannah and grassland fires. Industries on the Mpumalanga Highveld are often blamed for all forms of pollution, due to the NO2 hotspot over this area that is attributed to NOx emissions from industries and vehicle emissions from the Johannesburg-Pretoria megacity. However, a comparison of source strengths indicated that household combustion as well as savannah and grassland fires were the most significant sources of eBC, par-ticularly during winter and spring months, while coal-fired power stations, pyrometallurgical smelters and traffic contribute to eBC mass concentration levels year round.Peer reviewe

    Sources of particulate organic nitrates in the boreal forest in Finland

    Get PDF
    Organic nitrates (ON) are known to be present in secondary organic aerosol and act as a reservoir of nitrogen oxides, regulating the local and regional ozone and hydroxyl radical budgets. This work reports observations of particulate ON in Finnish remote boreal forest at a site with dominant emissions from biogenic volatile organic compounds. High Resolution-Aerosol Mass Spectrometer data were analysed in a unique way to characterize the sources of inorganic and organic nitrates. ON were found to be related to local sources with semi-volatile properties. Also they were implying a nocturnal formation mechanism. Occasionally, local sawmill emissions contributed greatly to the organic nitrates. The observations indicated that in the remote boreal forest area the NO 3 radicals are oxidizing biogenic VOCs producing ON. This work demonstrates the significant impact of anthropogenic-biogenic emissions interaction on the atmospheric organic nitrate aerosol mass concentration.Peer reviewe
    corecore