124 research outputs found

    Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling

    Get PDF
    The hypothalamus is critical to the coordination of energy balance and glucose homeostasis. It responds to peripheral factors, such as insulin and leptin, that convey to the brain the degree of adiposity and the metabolic status of the organism. The development of leptin and insulin resistance in hypothalamic neurons appears to have a key role in the exacerbation of diet-induced obesity. In rodents, this has been attributed partly to the increased expression of the tyrosine phosphatases Protein Tyrosine Phosphatase 1B (PTP1B) and T cell protein tyrosine phosphatase (TCPTP), which attenuate leptin and insulin signaling. Deficiencies in PTP1B and TCPTP in the brain, or specific neurons, promote insulin and leptin signaling and prevent diet-induced obesity, type 2 diabetes mellitus (T2DM), and fatty liver disease. Although targeting phosphatases and hypothalamic circuits remains challenging, recent advances indicate that such hurdles might be overcome. Here, we focus on the roles of PTP1B and TCPTP in insulin and leptin signaling and explore their potential as therapeutic targets

    Crystallization of importin alpha, the nuclear-import receptor

    Get PDF
    Crystals of recombinant importin alpha, the nuclear-import receptor, have been obtained at two different pH conditions by vapour diffusion using sodium citrate as precipitant and dithiothreitol as an additive. At pH 4-5, the crystals have the symmetry of the trigonal space group P3(1)21 or P3(2)21 (a = b = 78.0, c = 255.8 Angstrom, gamma = 120 degrees); at pH 6-7, the crystals have the symmetry of the orthorhombic space group P2(1)2(1)2(1) (a = 78.5, b = 89.7, c = 100.5 Angstrom). In both cases, there is probably one molecule of importin ct in the asymmetric unit. At least one of the crystal forms diffracts to a resolution higher than 3 Angstrom using the laboratory X-ray source; the crystals are suitable for crystal structure determination

    Strain-Dependent Differences in Bone Development, Myeloid Hyperplasia, Morbidity and Mortality in Ptpn2-Deficient Mice

    Get PDF
    Single nucleotide polymorphisms in the gene encoding the protein tyrosine phosphatase TCPTP (encoded by PTPN2) have been linked with the development of autoimmunity. Here we have used Cre/LoxP recombination to generate Ptpn2ex2−/ex2− mice with a global deficiency in TCPTP on a C57BL/6 background and compared the phenotype of these mice to Ptpn2−/− mice (BALB/c-129SJ) generated previously by homologous recombination and backcrossed onto the BALB/c background. Ptpn2ex2−/ex2− mice exhibited growth retardation and a median survival of 32 days, as compared to 21 days for Ptpn2−/− (BALB/c) mice, but the overt signs of morbidity (hunched posture, piloerection, decreased mobility and diarrhoea) evident in Ptpn2−/− (BALB/c) mice were not detected in Ptpn2ex2−/ex2− mice. At 14 days of age, bone development was delayed in Ptpn2−/− (BALB/c) mice. This was associated with increased trabecular bone mass and decreased bone remodeling, a phenotype that was not evident in Ptpn2ex2−/ex2− mice. Ptpn2ex2−/ex2− mice had defects in erythropoiesis and B cell development as evident in Ptpn2−/− (BALB/c) mice, but not splenomegaly and did not exhibit an accumulation of myeloid cells in the spleen as seen in Ptpn2−/− (BALB/c) mice. Moreover, thymic atrophy, another feature of Ptpn2−/− (BALB/c) mice, was delayed in Ptpn2ex2−/ex2− mice and preceded by an increase in thymocyte positive selection and a concomitant increase in lymph node T cells. Backcrossing Ptpn2−/− (BALB/c) mice onto the C57BL/6 background largely recapitulated the phenotype of Ptpn2ex2−/ex2− mice. Taken together these results reaffirm TCPTP's important role in lymphocyte development and indicate that the effects on morbidity, mortality, bone development and the myeloid compartment are strain-dependent

    Leptin and Insulin Act on POMC Neurons to Promote the Browning of White Fat

    Get PDF
    SummaryThe primary task of white adipose tissue (WAT) is the storage of lipids. However, “beige” adipocytes also exist in WAT. Beige adipocytes burn fat and dissipate the energy as heat, but their abundance is diminished in obesity. Stimulating beige adipocyte development, or WAT browning, increases energy expenditure and holds potential for combating metabolic disease and obesity. Here, we report that insulin and leptin act together on hypothalamic neurons to promote WAT browning and weight loss. Deletion of the phosphatases PTP1B and TCPTP enhanced insulin and leptin signaling in proopiomelanocortin neurons and prevented diet-induced obesity by increasing WAT browning and energy expenditure. The coinfusion of insulin plus leptin into the CNS or the activation of proopiomelanocortin neurons also increased WAT browning and decreased adiposity. Our findings identify a homeostatic mechanism for coordinating the status of energy stores, as relayed by insulin and leptin, with the central control of WAT browning

    Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance

    Get PDF
    Reactive oxygen species (ROS) generated during exercise are considered integral for the health-promoting effects of exercise. However, the precise mechanisms by which exercise and ROS promote metabolic health remain unclear. Here, we demonstrate that skeletal muscle NADPH oxidase 4 (NOX4), which is induced after exercise, facilitates ROS-mediated adaptive responses that promote muscle function, maintain redox balance, and prevent the development of insulin resistance. Conversely, reductions in skeletal muscle NOX4 in aging and obesity contribute to the development of insulin resistance. NOX4 deletion in skeletal muscle compromised exercise capacity and antioxidant defense and promoted oxidative stress and insulin resistance in aging and obesity. The abrogated adaptive mechanisms, oxidative stress, and insulin resistance could be corrected by deleting the H2O2-detoxifying enzyme GPX-1 or by treating mice with an agonist of NFE2L2, the master regulator of antioxidant defense. These findings causally link NOX4-derived ROS in skeletal muscle with adaptive responses that promote muscle function and insulin sensitivity

    Protein tyrosine phosphatases expression during development of mouse superior colliculus

    Get PDF
    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior colliculus. Subsequently, the expression patterns of 11 PTPs (TC-PTP, PTP1C, PTP1D, PTP-MEG2, PTP-PEST, RPTPJ, RPTPε, RPTPRR, RPTPσ, RPTPκ and RPTPγ) were further analyzed in detail in superior colliculus from embryonic E13 to postnatal P20 stages by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. Each of the 11 PTPs exhibits distinct spatiotemporal regulation of mRNAs and proteins in the developing superior colliculus suggesting their versatile roles in genesis of neuronal and glial cells and retinocollicular topographic mapping. At E13, additional double-immunohistochemical analysis revealed the expression of PTPs in collicular nestin-positive neural progenitor cells and RC-2-immunoreactive radial glia cells, indicating the potential functional importance of PTPs in neurogenesis and gliogenesis

    Conservation of Complex Nuclear Localization Signals Utilizing Classical and Non-Classical Nuclear Import Pathways in LANA Homologs of KSHV and RFHV

    Get PDF
    ORF73 latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) is targeted to the nucleus of infected cells where it binds to chromatin and mediates viral episome persistence, interacts with cellular proteins and plays a role in latency and tumorigenesis. A structurally related LANA homolog has been identified in the retroperitoneal fibromatosis herpesvirus (RFHV), the macaque homolog of KSHV. Here, we report the evolutionary and functional conservation of a novel bi-functional nuclear localization signal (NLS) in KSHV and RFHV LANA. N-terminal peptides from both proteins were fused to EGFP or double EGFP fusions to examine their ability to induce nuclear transport of a heterologous protein. In addition, GST-pull down experiments were used to analyze the ability of LANA peptides to interact with members of the karyopherin family of nuclear transport receptors. Our studies revealed that both LANA proteins contain an N-terminal arginine/glycine (RG)-rich domain spanning a conserved chromatin-binding motif, which binds directly to importin β1 in a RanGTP-sensitive manner and serves as an NLS in the importin β1-mediated non-classical nuclear import pathway. Embedded within this domain is a conserved lysine/arginine-(KR)-rich bipartite motif that binds directly to multiple members of the importin α family of nuclear import adaptors in a RanGTP-insensitive manner and serves as an NLS in the classical importin α/β-mediated nuclear import pathway. The positioning of a classical bipartite kr-NLS embedded within a non-classical rg-NLS is a unique arrangement in these viral proteins, whose nuclear localization is critical to their functionality and to the virus life cycle. The ability to interact with multiple import receptors provides alternate pathways for nuclear localization of LANA. Since different import receptors can import cargo to distinct subnuclear compartments, a multifunctional NLS may provide LANA with an increased ability to interact with different nuclear components in its multifunctional role to maintain viral latency
    corecore