186 research outputs found

    Identifying coherent spatiotemporal modes in time-uncertain proxy paleoclimate records

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Climate Dynamics 41 (2013): 1291-1306, doi:10.1007/s00382-012-1483-0.High-resolution sedimentary paleoclimate proxy records offer the potential to expand the detection and analysis of decadal- to centennial-scale climate variability during recent millennia, particularly within regions where traditional high-resolution proxies may be short, sparse, or absent. However, time uncertainty in these records potentially limits a straightforward objective identification of broad-scale patterns of climate variability. Here, we describe a procedure for identifying common patterns of spatiotemporal variability from time uncertain sedimentary records. This approach, which we term Monte Carlo Empirical Orthogonal Function (MCEOF) analysis, uses iterative age modeling and eigendecomposition of proxy time series to isolate common regional patterns and estimate uncertainties. As a test case, we apply this procedure to a diverse set of time-uncertain lacustrine proxy records from East Africa. We also perform a pseudoproxy experiment using climate model output to examine the ability of the method to extract shared anomalies given known signals. We discuss the advantages and disadvantages of our approach, including possible extensions of the technique.JET acknowledges the UCAR Climate and Global Change Postdoctoral Fellowship for support.2014-08-2

    A TEX86 surface sediment database and extended Bayesian calibration

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Data 2 (2015): 150029, doi:10.1038/sdata.2015.29.Quantitative estimates of past temperature changes are a cornerstone of paleoclimatology. For a number of marine sediment-based proxies, the accuracy and precision of past temperature reconstructions depends on a spatial calibration of modern surface sediment measurements to overlying water temperatures. Here, we present a database of 1095 surface sediment measurements of TEX86, a temperature proxy based on the relative cyclization of marine archaeal glycerol dialkyl glycerol tetraether (GDGT) lipids. The dataset is archived in a machine-readable format with geospatial information, fractional abundances of lipids (if available), and metadata. We use this new database to update surface and subsurface temperature calibration models for TEX86 and demonstrate the applicability of the TEX86 proxy to past temperature prediction. The TEX86 database confirms that surface sediment GDGT distribution has a strong relationship to temperature, which accounts for over 70% of the variance in the data. Future efforts, made possible by the data presented here, will seek to identify variables with secondary relationships to GDGT distributions, such as archaeal community composition

    The effect of sea level on glacial Indo-Pacific climate

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 6 (2013): 485–491, doi:10.1038/ngeo1823.The Indo-Pacific Warm Pool – the Earth’s largest body of warm water and main source of heat and moisture to the global atmosphere – plays a prominent role in tropical and global climate change. The physical mechanisms driving changes in the warm pool over glacial-interglacial timescales are largely unknown. Here we show that during the Last Glacial Maximum (LGM) changes in global sea level influenced tropical climate by exposing the Sunda Shelf and altering the Walker Circulation. Our result is based on a synthesis of marine and terrestrial proxies sensitive to hydroclimate and a multi-model ensemble of climate simulations. The proxy data suggest drying throughout the warm pool, and wetter conditions in the western Indian and Pacific oceans. Only one model out of twelve simulates a similar pattern of hydroclimate change, as measured by the Cohen’s statistic. According to this model, weakened convection over the warm pool in response to exposure of the Sunda Shelf drives the proxy-inferred hydrological changes. Our study demonstrates that on glacial-interglacial timescales, ice sheets exert a first order influence on tropical climate through changes in global sea level.Funding for this work was provided by NSF (grant AGS 1204011) and the University of Hawaii.2013-11-1

    Multidecadal variability in East African hydroclimate controlled by the Indian Ocean

    Get PDF
    The recent decades-long decline in East African rainfall suggests that multidecadal variability is an important component of the climate of this vulnerable region. Prior work based on analysing the instrumental record implicates both Indian and Pacific ocean sea surface temperatures (SSTs) as possible drivers of East African multidecadal climate variability, but the short length of the instrumental record precludes a full elucidation of the underlying physical mechanisms. Here we show that on timescales beyond the decadal, the Indian Ocean drives East African rainfall variability by altering the local Walker circulation, whereas the influence of the Pacific Ocean is minimal. Our results, based on proxy indicators of relative moisture balance for the past millennium paired with long control simulations from coupled climate models, reveal that moist conditions in coastal East Africa are associated with cool SSTs (and related descending circulation) in the eastern Indian Ocean and ascending circulation over East Africa. The most prominent event identified in the proxy record—a coastal pluvial from 1680 to 1765—occurred when Indo-Pacific warm pool SSTs reached their minimum values of the past millennium. Taken together, the proxy and model evidence suggests that Indian Ocean SSTs are the primary influence on East African rainfall over multidecadal and perhaps longer timescales

    Rainfall regimes of the Green Sahara

    Get PDF
    During the “Green Sahara” period (11,000 to 5000 years before the present), the Sahara desert received high amounts of rainfall, supporting diverse vegetation, permanent lakes, and human populations. Our knowledge of rainfall rates and the spatiotemporal extent of wet conditions has suffered from a lack of continuous sedimentary records. We present a quantitative reconstruction of western Saharan precipitation derived from leaf wax isotopes in marine sediments. Our data indicate that the Green Sahara extended to 31°N and likely ended abruptly. We find evidence for a prolonged “pause” in Green Sahara conditions 8000 years ago, coincident with a temporary abandonment of occupational sites by Neolithic humans. The rainfall rates inferred from our data are best explained by strong vegetation and dust feedbacks; without these mechanisms, climate models systematically fail to reproduce the Green Sahara. This study suggests that accurate simulations of future climate change in the Sahara and Sahel will require improvements in our ability to simulate vegetation and dust feedbacks

    Extremes in East African hydroclimate and links to Indo-Pacific variability on interannual to decadal timescales

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Climate Dynamics 50 (2018): 2971–2991, doi:10.1007/s00382-017-3786-7.East African hydroclimate exhibits considerable variability across a range of timescales, with implications for its population that depends on the region’s two rainy seasons. Recent work demonstrated that current state-of-the-art climate models consistently underestimate the long rains in boreal spring over the Horn of Africa while overestimating the short rains in autumn. This inability to represent the seasonal cycle makes it problematic for climate models to project changes in East African precipitation. Here we consider whether this bias also has implications for understanding interannual and decadal variability in the East African long and short rains. Using a consistent framework with an unforced multi-century global coupled climate model simulation, the role of Indo-Pacific variability for East African rainfall is compared across timescales and related to observations. The dominant driver of East African rainfall anomalies critically depends on the timescale under consideration: Interannual variations in East African hydroclimate coincide with significant sea surface temperature (SST) anomalies across the Indo-Pacific, including those associated with the El Niño-Southern Oscillation (ENSO) in the eastern Pacific, and are linked to changes in the Walker circulation, regional winds and vertical velocities over East Africa. Prolonged drought/pluvial periods in contrast exhibit anomalous SST predominantly in the Indian Ocean and Indo-Pacific warm pool (IPWP) region, while eastern Pacific anomalies are insignificant. We assessed dominant frequencies in Indo-Pacific SST and found the eastern equatorial Pacific dominated by higher-frequency variability in the ENSO band, while the tropical Indian Ocean and IPWP exhibit lower-frequency variability beyond 10 years. This is consistent with the different contribution to regional precipitation anomalies for the eastern Pacific versus Indian Ocean and IPWP on interannual and decadal timescales, respectively. In the model, the dominant low-frequency signal seen in the observations in the Indo-Pacific is not well-represented as it instead exhibits overly strong variability on subdecadal timescales. The overly strong ENSO-teleconnection likely contributes to the overestimated role of the short rains in the seasonal cycle in the model compared to observations.The project was supported by the U.S. National Science Foundation under OCE-1203892, C.C.U. also through the Penzance and John P. Chase Memorial Endowed Funds, and the Investment in Science Fund at WHOI, and M.K. through the Research Internships in Science and Engineering (RISE) program by the German Foreign Exchange Service

    The influence of Indian Ocean atmospheric circulation on Warm Pool hydro-climate during the Holocene epoch

    Get PDF
    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September–November (SON) season is important for hydroclimate in Borneo. The preëminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene

    Past and future rainfall in the Horn of Africa

    Get PDF
    fomented drought and famine, threatening food security in an already vulnerable region. Some attribute this decline to anthropogenic forcing, whereas others maintain that it is a feature of internal climate variability. We show that the rate of drying in the Horn of Africa during the 20th century is unusual in the context of the last 2000 years, is synchronous with recent global and regional warming, and therefore may have an anthropogenic component. In contrast to 20th century drying, climate models predict that the Horn of Africa will become wetter as global temperatures rise. The projected increase in rainfall mainly occurs during the September–November “short rains” season, in response to large-scale weakening of the Walker circulation. Most of the models overestimate short rains precipitation while underestimating long rains precipitation, causing the Walker circulation response to unrealistically dominate the annual mean. Our results highlight the need for accurate simulation of the seasonal cycle and an improved understanding of the dynamics of the long rains season to predict future rainfall in the Horn of Africa

    Comparison of three methods for the methylation of aliphatic and aromatic compounds

    Get PDF
    Rationale: Methylation protocols commonly call for acidic, hot conditions that are known to promote organic ^1H/^2H exchange in aromatic and aliphatic C—H bonds. Here we tested two such commonly-used methods and compared a third that avoids these acidic conditions, to quantify isotope effects with each method and to directly determine acidic-exchange rates relevant to experimental conditions. Methods: We compared acidic and non-acidic methylation approaches catalyzed by hydrochloric acid, acetyl chloride and EDCI (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) / DMAP (4-dimethylaminopyridine) respectively. These were applied to two analytes: phthalic acid (an aromatic) and octacosanoic acid (an aliphatic). We analyzed yield by gas chromatography flame ionization (GC/FID) and hydrogen and carbon isotopic composition by isotope ratio mass spectrometry (GC/IRMS). We quantified the ^1H/^2H exchange rate on dimethyl phthalate under acidic conditions with proton nuclear magnetic resonance (^1H-NMR) measurements. Results: The δ^2H and δ^(13)C values and yield were equivalent among the three methods for methyl octacosanoate. The two acidic methods resulted in comparable yield and isotopic composition of dimethyl phthalate; however, the non-acidic method resulted in lower δ^2H and δ^(13)C values perhaps due to low yields. Concerns over acid-catalyzed ^1H/^2H exchange are unwarranted as the effect was trivial over a 12-hour reaction time. Conclusions: We find product isolation yield and evaporation to be the main concerns in the accurate determination of isotopic composition. ^1H/^2H exchange reactions are too slow to cause measurable isotope fractionation over the typical duration and reaction conditions used in methylation. Thus, we are able to recommend continued use of acidic catalysts in such methylation reactions for both aliphatic and aromatic compounds

    Lipid biomarker record documents hydroclimatic variability of the Mississippi River Basin during the common era

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Munoz, S. E., Porter, T. J., Bakkelund, A., Nusbaumer, J., Dee, S. G., Hamilton, B., Giosan, L., & Tierney, J. E. Lipid biomarker record documents hydroclimatic variability of the Mississippi River Basin during the common era. Geophysical Research Letters, 47(12), (2020): e2020GL087237, doi:10.1029/2020GL087237.Floods and droughts in the Mississippi River basin are perennial hazards that cause severe economic disruption. Here we develop and analyze a new lipid biomarker record from Horseshoe Lake (Illinois, USA) to evaluate the climatic conditions associated with hydroclimatic extremes that occurred in this region over the last 1,800 years. We present geochemical proxy evidence of temperature and moisture variability using branched glycerol dialkyl glycerol tetraethers (brGDGTs) and plant leaf wax hydrogen isotopic composition (δ2Hwax) and use isotope‐enabled coupled model simulations to diagnose the controls on these proxies. Our data show pronounced warming during the Medieval era (CE 1000–1,600) that corresponds to midcontinental megadroughts. Severe floods on the upper Mississippi River basin also occurred during the Medieval era and correspond to periods of enhanced warm‐season moisture. Our findings imply that projected increases in temperature and warm‐season precipitation could enhance both drought and flood hazards in this economically vital region.This project was supported by grants to S. E. M and L. G. (NSF EAR‐1804107), T. J. P. (NSERC Discovery Grant), and S. G. D. (NOAA‐NA18OAR4310427)
    corecore