
Climate Dynamics manuscript No.
(will be inserted by the editor)

Identifying coherent spatiotemporal modes in time-uncertain
proxy paleoclimate records

Kevin J. Anchukaitis · Jessica E. Tierney

Received: date / Accepted: date

Abstract High-resolution sedimentary paleoclimate proxy records offer the potential to ex-1

pand the detection and analysis of decadal- to centennial-scale climate variability during2

recent millennia, particularly within regions where traditional high-resolution proxies may3

be short, sparse, or absent. However, time uncertainty in these records potentially limits a4

straightforward objective identification of broad-scale patterns of climate variability. Here,5

we describe a procedure for identifying common patterns of spatiotemporal variability from6

time uncertain sedimentary records. This approach, which we term Monte Carlo Empirical7

Orthogonal Function (MCEOF) analysis, uses iterative age modeling and eigendecompo-8

sition of proxy time series to isolate common regional patterns and estimate uncertainties.9

As a test case, we apply this procedure to a diverse set of time-uncertain lacustrine proxy10

records from East Africa. We also perform a pseudoproxy experiment using climate model11

output to examine the ability of the method to extract sharedanomalies given known signals.12

We discuss the advantages and disadvantages of our approach, including possible extensions13

of the technique.14

Keywords paleoclimate· Africa · empirical orthogonal functions· Monte Carlo·15

uncertainty· geochronology16

1 Introduction17

Large-scale climate reconstructions over the last two millennia (the ‘Common Era’) often18

rely on the use of climatic proxies that are precisely dated,annually resolved, and overlap19

with instrumental climate data: e.g. tree rings, corals, varved sediments and annually-layered20

ice cores (e.g. Fritts et al, 1971; Fritts, 1991; Cook et al, 1994; Mann et al, 1998; Cook21
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et al, 1999; Evans et al, 2002; Esper et al, 2002; Hegerl et al,2007; Jansen et al, 2007;22

Jones et al, 2009; Cook et al, 2010). Such proxies have an advantage in that they can be23

reliably calibrated and statistically validated against the instrumental record and are known24

to reflect seasonal to centennial climate variability. However, one potential disadvantage25

of this class of proxy archives is that, with some exceptions, they are relatively short in26

duration; for instance, the longest continuous coral records span approximately 300 to 40027

years (Gagan et al, 2000; Lough, 2010) and the majority of tree ring chronologies cover the28

last millennium or less (with some notable exceptions, e.g.LaMarche, 1974; Pilcher et al,29

1984; Lara and Villalba, 1993; Cook et al, 2000; Grudd et al, 2002; Salzer and Hughes, 2007;30

Büntgen et al, 2011). Thus, reconstructions relying on such archives may not completely31

capture low frequency climate variability at multi-centennial time scales (e.g. Cook et al,32

1995) or they may span only a portion of the Common Era. Perhaps of greater concern,33

however, is that there are areas on Earth where traditional high-resolution climate archives34

are sparse or thus far unavailable, including some terrestrial tropical regions where trees do35

not form reliable annual rings and over much of the global ocean.36

Lake and ocean sediment records provide a source of long, continuous climate records37

that retain low-frequency variability, and in doing so can fill in gaps in the climate history38

of the late Holocene left by annually-resolved archives in both time and space. Sediment39

archives also have an advantage in that they are available over much of the Earth’s surface.40

A primary limitation of sedimentary archives, however, is that they typically lack annual41

resolution and are only rarely absolutely dated. Sedimentary records often rely instead on42

radiometric dating methods (e.g.14C, 210Pb) which endow the archive with an uncertainty43

in time related to both the precision of the dating method andthe density of dates down the44

length of the core. In particular, radiocarbon (14C) dating via accelerated mass spectrometry45

(AMS) typically carries an analytical error on the order of 20–50 years, and this is com-46

pounded with the uncertainty involved in translating radiocarbon years to calendar years,47

a relationship that varies depending on the Sun’s modulation of the atmospheric produc-48

tion rate of14C. When the14C year/calendar year relationship deviates significantly from49

a one-to-one relationship – for instance, during the Maunder Minimum (1645–1715 CE)50

when the14C concentration in the atmosphere was anomalously high – radiocarbon dating51

uncertainty may exceed 100 calendar years. While such uncertainty may be relatively incon-52

sequential for the interpretation of sediment proxies on the orbital or multi-millennial scale,53

on shorter timescales such as the last millennium it presents a problem: it becomes difficult54

to establish the precise timing of major climate events on the decadal, multi-decadal, and55

centennial scale, or to determine whether two or more time series are coherent and record56

common regional changes in climate. Furthermore, in order for statistically calibrated and57

validated climate reconstructions to combine lower-frequency time uncertain records with58

high-frequency, absolutely-dated time series – an approach that is increasingly being ex-59

plored (e.g. Moberg et al, 2005; Kaufman et al, 2009) – there needs to be a robust way to60

account for the time-uncertainty introduced by sediment records. Within an individual sedi-61

ment core, time uncertainty can be reduced by dating sedimentary units densely enough such62

that the overlapping dates are reduced in their uncertaintyby the principle of stratigraphic63

superposition, or such that the raw14C dates can be tightly ‘wiggle-matched’ directly to the64

14C production curve (Blaauw et al, 2003). However, given the high analytical costs of14C65

analysis, this is not always a practical approach.66

Here, we present a simple, transparent and broadly-applicable procedure that can be67

used to assess time uncertainty in proxy records while identifying coherent spatiotemporal68

variability between multiple independent time-uncertaintime series. This approach, which69

we call “Monte Carlo Empirical Orthogonal Function” (MCEOF) analysis, iteratively calcu-70
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lates depth-to-age models for each respective time-uncertain proxy record of interest taking71

into account individual age model constraints, then decomposes the set of records into pat-72

terns in space and amplitude principal components series intime. By iteratively conducting73

many thousands of simulations, we are able to assess the robustness and estimate uncertainty74

surrounding patterns of paleoclimate change defined by time-uncertain records in both time75

and space. Furthermore, the simulations offer a method by which to empirically and statis-76

tically assess the synchronicity of major abrupt climate events recorded in disparate proxy77

datasets, including abrupt droughts or pluvials.78

As proof of concept, we apply this technique to seven lacustrine paleohydrological re-79

constructions from East Africa. East Africa is a region where annually-resolved archives are80

thus far relatively sparse: in particular, tree-ring archives are few (Stahle, 1999; Verschuren,81

2004). Rather, most of the paleoclimatic data from this region are proxies measured in lake82

sediment cores, the majority of which are dated using radiometric techniques (e.g. Ver-83

schuren et al, 2000; Stager et al, 2005; Russell and Johnson,2007). The East African region84

is thus as an ideal target for MCEOF analysis. We further evaluate the skill of our technique85

in recovering coherent large-scale climate variability using a set of ‘pseudoproxies’ – sim-86

ulated time series intended to mimic the actual proxy records (Evans et al, 1998; Smerdon,87

2011) – generated from a last millennium climate model simulation. Here, we focus on dis-88

cussing how application of MCEOF to East African hydroclimate reconstruction illustrates89

the capabilities and limitations of the technique. The large-scale climatic implications of the90

MCEOF analysis are investigated in-depth elsewhere (Tierney et al, submitted).91

As we describe below, the MCEOF approach can be generally applied to any collection92

of paleoclimatic reconstructions that are time-uncertain. The technique is intended to be93

modular and flexible enough to incorporate a diverse set of proxy records, dating methods,94

and age modelling approaches.95

2 Data and Methods96

2.1 Proxy and chronological data97

For our test analysis of regional changes in hydrology during the past millennium in East98

Africa, we utilized seven paleohydrological time series from the region (Fig. 1) that [1]99

use a proxy interpreted to predominantly reflect changes in hydroclimate, [2] contain data100

analyzed at a mean time interval of 50 years or less, [3] contain at least seven depth-age tie-101

points, [4] contain a least one data point representative ofmodern (> 1950 CE) conditions102

and [5] have a reasonably well-constrained stratigraphy (i.e., minimal evidence of turbidites,103

reworking, large hiatuses in sedimentation). Table 1 summarizes the literature references,104

chronological controls, average time-resolution, proxy type and length associated of each105

time series. We used the proxy data “as is,” i.e., as presented in the source publication with106

a few exceptions: [1] if necessary, proxy records were truncated at the core depth associated107

with the last age control point within the last 2000 years; [2] in the case of Lake Masoko, two108

records of magnetic susceptibility are available from the lake, from two different cores – one109

that extends to approximately 1500 CE (Garcin et al, 2007) and another that extends back to110

ca. 43,300 BCE (Garcin et al, 2006). To cover the entirety of the last millennium, we used111

the longer record, but translated the210Pb age control points from the depths in the shorter112

core to equivalent depths in the longer core, taking advantage of the fact that for their period113

of overlap, the two records of magnetic susceptibility are highly and significantly correlated114

(r = 0.90, p = 0.0002; Monte Carlo test; Ebisuzaki, 1997); [3]the charcoal data from Lake115
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Tanganyika were log-transformed to account for the strongly skewed distribution of these116

data.117

Various methods were used by the authors of the African paleohydrological data to118

provide chronological control, including AMS14C dating, unsupported210Pb dating, iden-119

tification of known tephra layers and varve counting (Table 1). Recognizing that each type120

of dating method has a different kind of error distribution,we treat the different classes of121

dating methods accordingly in our MCEOF procedure as described below. We assume that122

year-of-collection assignments and historical marker horizons have no error associated with123

them, except if otherwise indicated in the source publication. We assume that210Pb dates,124

cross-core correlations and tephra markers have error thatcan be approximated by a Gaus-125

sian distribution and if not specified in the source publication, the 1σ error was assumed126

to be 5 years. Of the seven records, two utilize varve chronologies (Lake Malawi and Lake127

Challa) and in that case uncertainty is based on an estimate of potential errors in identifying128

and counting the annual layers. The estimated uncertainty for the Lake Malawi varve stratig-129

raphy is± 0.5 annual varve couplets (0.5 years) at each stratigraphichorizon (Johnson and130

McCave, 2008). The estimated uncertainty for the Lake Challa varve stratigraphy is± 0.3131

annual varve couplets (C. Wolff, pers. comm.).132

Uncertainty associated with14C dating is more complicated, as the translation of14C133

years into calendar years is a function of the14C production rate in the atmosphere and134

therefore varies in time. Furthermore,14C dates on total organic carbon (TOC) in lakes135

often reflect a lake-specific radiocarbon reservoir, which can be substantial (i.e. 500–1000136

years) in hardwater lakes or large lakes with a permanently isolated hypolimnion. Of the137

seven lakes, two (Victoria and Tanganyika) have radiocarbon reservoirs and TOC14C dates,138

thus requiring that the dates be corrected prior to calibration to calendar years. In each139

of these studies, the authors determine the lake14C reservoir correction via use of paired140

terrestrial macrofossil and lake TOC14C dates or paired210Pb and14C dates from the same141

stratigraphic horizon, but do not provide an estimate of error associated with these reservoir142

corrections. Since we do not have error information we assume for the purposes of this143

study that any reservoir corrections made by the authors do not have an error, although in144

principle known reservoir errors could be compounded with the analytical14C error prior to145

calibration to calendar years.146

To treat the14C dates between the seven records consistently, we re-calibrate the raw (or147

reservoir-corrected)14C ages provided in each source publication using the IntCal09 curve148

(Reimer et al, 2009) and CALIB 6.0 (Stuiver and Reimer, 1993), and we use the resulting149

calendar-age empirical probability distributions duringthe age model iterations described150

below. These distributions are often highly non-Gaussian in shape, containing plateaus and151

multiple maxima.152

In many cases, the authors of the individual limnological studies omitted “reversed”14C153

ages – dates whose mean calibrated calendar year designation was older than the date below154

it within the stratigraphic column and thus potentially violates the principle of superposition.155

This is not an uncommon feature of radiometric age modeling in depositional environments,156

and often arises due to the reworking of older sedimentary material or bioturbation. Here, we157

reincorporate some of these as potential additional age controls, while still omitting those158

reversed dates where the probability of randomly drawing a set of dates between an ordered159

date and a potentially reversed date in stratigraphic orderis less than 5%.160
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2.2 A Monte Carlo Empirical Orthogonal Function Approach161

We seek a reduced set of spatial and temporal variables that isolate the dominant modes of162

regional paleoclimate variability amongst a set of proxy records and that also account for the163

time uncertainty inherent to each individual record. Our procedure therefore involves itera-164

tion of two integrated steps: First, we independently resample the individual age models for165

each lacustrine proxy record using their radiometric and other age controls and their respec-166

tive uncertainty, then we decompose each set of resampled proxy records into their leading167

spatiotemporal modes using empirical orthogonal function(EOF) analysis. This procedure168

is repeated many thousands of times, resulting in bootstrapped ensembles of possible proxy169

records, EOF loadings, and EOF time series expansions each defined by different age-depth170

models.171

2.2.1 Iterative Age-Depth modeling172

As described in Section 2.1 above, each proxy record is mapped to calendar years using a set173

of age-depth relationships, each with its own uncertainty.There has been considerable focus174

on developing methods for creating an optimal age model for asingle sediment core (e.g.175

Blaauw et al, 2003; Telford et al, 2004a; Heegaard et al, 2005; Blockley et al, 2007; Bronk176

Ramsey, 2008; Goslar et al, 2009; Blaauw, 2010; Blaauw and Christen, 2011). Here we177

take an alternative approach: instead of modeling a single optimal age-depth relationship,178

we iteratively resample from the probability distributionof possible dates in each record179

and develop an ensemble of thousands of possible proxy time series that are consistent with180

the age determinations, their estimated uncertainty, and stratigraphic position. In practical181

terms, for each age constraint in each individual proxy record, for each iteration we indepen-182

dently draw a possible date from the probability distribution of possible ages, and use these183

to create a new age model. This process is continued for each chronological constraints. Our184

approach is similar in spirit to Bayesian iterative techniques – which have been applied to185

age-modeling previously in a similar manner (e.g. Blaauw etal, 2007; Bronk Ramsey, 2008;186

Blaauw and Christen, 2011) – but here we make no prior assumptions about sedimentation187

rates. The only assumption we make is that of superposition:that age of sediments increases188

as one moves downcore. We enforce this requirement moving down-section, following the189

assumption that typically the researcher has tighter chronological constraints near the top190

of the sediment core (such as210Pb dating and the date of collection) than farther down in191

the sedimentary sequence. For each age model iteration, we choose a date within the uncer-192

tainty bounds of the top-most chronological constraint andthen if necessary exclude areas193

of the uncertainty envelope in the subsequent chronological datapoint that would violate su-194

perposition. We then fit an age model to the subsequent depth-age pairs using a monotonic195

piecewise cubic hermite polynomial function (Carlson and Fritsch, 1985), which smooths196

over abrupt changes in sedimentation rates at tiepoints butunlike a spline function does not197

permit unrealistic overshoots of the age model between tiepoints. In practice, linear interpo-198

lation yields quite similar results.199

Some sediment proxy records have a unique set of chronological considerations that may200

require a different approach to age-depth modelling than the basic one described above. For201

instance, Lakes Challa and Malawi have varve chronologies,and so we model their age un-202

certainty in a unique way: we assume that counting estimatesare equivalent to a 1-sigma203

value of a Gaussian error distribution, and that the error invarve counting is independent204

between respective stratigraphic horizons. To iterate within this dating constraint, we ran-205

domly sample an error value from a Gaussian distribution with a mean of zero and standard206
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deviation of the varve counting error at each depth intervalat which the proxy was mea-207

sured in the core, with the added constraint of superposition. This simulates the possibility208

of erroneously missing or identifying a varve, and this error then accumulates or attenuates209

along the length of the core.210

Some sedimentary time-uncertain sequences may contain proxy measurements below211

the last chronological control point. For example, the bottom of the Lake Victoria record212

spans beyond the last radiometric date, and so in the original source publication it is an-213

chored by extending the inferred sedimentation rate from the dated portion of the top of214

the core (Stager et al, 2005). We mimic this procedure here byfitting a line to the upcore215

resampled ages at each iteration and using the least squaresregression equation to establish216

a bottom date.217

Finally, in some cases such a large depth unit was sampled forthe chronological mea-218

surement that is it appropriate to take into account errors in depth as well. This is the case for219

the Lake Naivasha data, and so we also consider additional uncertainty in the corresponding220

depth of the of the material used for radiometric dates by resampling from a Gaussian dis-221

tribution reflecting the range of possible values (Verschuren et al, 2000; Verschuren, 2001).222

2.2.2 Empirical orthogonal functions223

Empirical orthogonal function (EOF) analysis decomposes the common variance in a col-224

lection of individual time series into a few leading, low order orthogonal ‘modes’ (for an225

overview of EOF analysis see Preisendorfer and Mobley, 1988; Jolliffe, 2002; Navarra and226

Simoncini, 2010). The resulting time series and the associate spatial patterns, or loadings,227

can be used to identify and analyze common or robust spatiotemporal variability from a large228

set of proxy records. Let us represent a time series of proxy paleoclimate data as vector of229

lengthn230

xi = (xi(1),xi(2), . . . ,xi(n)) (1)

231

232

For a collection of individual proxy paleoclimate times series of lengthn from m sites,233

we can construct the original data matrixX234

X =











x1(1) x1(2) . . . x1(n)
x2(1) x2(2) . . . x2(n)

. . . . . .
.. . . . .

xm(1) xm(2) . . . xm(n)











(2)

235

236

In order to be able to perform the empirical orthogonal decomposition of the data ma-237

trix, the different proxy series are linearly interpolatedto a common time step; in the case238

of the East Africa analyses performed here, we interpolate to a time-step of 5 years. In239

practical terms, we have constructed a matrix where each rowreflects the data from a differ-240

ent proxy site, and time changes are regular intervals from column to column. Because the241

individual proxy records each have their own dimension associated with the measurement242

scale of the various analyses, for comparison the time series can be made non-dimensional243

(standardized) by removing the mean ¯x of each and setting the standard deviations to unity244
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zi =
xi − x̄

s
(3)

245

246

The correlation matrixR of the scaled data is then given by247

R =
1

n−1
ZZT (4)

248

249

For paleoclimate applications, aligning each record such that the direction of the time250

series anomalies indicates the same qualitative interpretation of past climate conditions (e.g.251

positive anomalies always indicate wet conditions and negative anomalies, dry conditions)252

facilitates interpretation. This may require changing thesign of some records such that same253

signed anomalies have the same climatic interpretation.254

Empirical orthogonal function (EOF) analysis decomposes the correlation matrix of the255

proxy series into a set ofm orthogonal eigenvectorsu and their corresponding eigenvalues256

σ257

R = UΣUT (5)

258

259

We refer to the eigenvectors as ‘loadings’. Projecting the normalized data matrix onto260

these yields anm by n set of corresponding uncorrelated temporal scores, amplitudes, or261

time seriesA:262

A = ZU (6)

263

264

In practice, the singular value decomposition of the non-dimensional data matrixZ265

yields the same results. Note that, because the sign of the eigenvectors is arbitrary, it may be266

necessary to examine the results of the decomposition in order to ensure consistent physical267

interpretability across iterations. The percent of the total variance from the original proxy268

records associated with each newith mode is given by:269

σi
m

∑
i=1

σi

(7)

270

271

2.3 Method application and evaluation272

2.3.1 Significance testing273

The eigenvalues, and by extension the variance explained byeach new variable, offer an274

opportunity to evaluate which of the leading modes are likely to be meaningful or separable275
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from noise. Such criteria can be thought of as an assessment of statistical significance with276

respect to the same procedures when applied to an appropriate null model. Kaiser (1960)277

suggested retaining only those modes with eigenvalues froma correlation matrices greater278

than unity. Cattell (1966) proposed using a scree plot to identify where the slope of the or-279

dered eigenvalues appears to ‘level off’, and North et al (1982) provided a rule of thumb280

based on identifying degenerate EOFs that are a function of sampling noise. As an alterna-281

tive, non-parametric approach, Monte Carlo methods – whichevaluate the data eigenvalues282

against a white or red noise null model (Preisendorfer and Mobley, 1988) – provide a per-283

haps more rigorous test for significance, although it shouldbe noted that even here what is284

being tested is not the physical interpretability of any given mode, but rather whether they285

are likely to differ from a reasonable null hypothesis.286

We apply a test similar to Preisendorfer’s ‘Rule N’ (Preisendorfer and Mobley, 1988) in287

order to evaluate how the low order modes of climate variability in the regional set of proxy288

data compare to those that can arise from random noise time series. For our null hypothesis,289

we created synthetic, random time series based on [1] Gaussian white noise and [2] ‘red’290

noise, with parameters derived from autoregressive (AR) models fitted to the actual data291

series (Schneider and Neumaier, 2001). The order of the AR models was determined by292

Schwarz’s Bayesian Criterion. The set of random time seriesare then subjected to the same293

EOF analysis described above and their eigenvalues compared with those from the ensemble294

from the actual data. We performed 1000 red noise tests for each of the 10,000 ensemble295

members of the real data.296

2.3.2 Orthogonal rotation297

The methods described above produce a reduced set of orthogonal modes that reflect pat-298

terns of common variability in space and time in the originalproxy data. While this approach299

is efficient for reducing the dataset, the orthogonality constraint almost certainly places lim-300

its on the interpretation of the modes in terms of their physical, climatological associations301

(c.f. Richman, 1986; Dommenget and Latif, 2002; Dommenget,2007; Hannachi et al, 2007;302

Monahan et al, 2009). That is, climate variability for a region is likely to be a composite303

of forced and unforced variability that are possibly correlated in time and space, each with304

their own magnitude and preferred time scales of variability (Monahan et al, 2009). One305

approach commonly used to isolate more ‘local’ modes of variability in a set of space-time306

records that allows relaxation of orthogonality constraints is rotation of the eigenvectors307

such that the new loadings cluster either near unity or near zero (Richman, 1986; Mestas-308

Nuñez, 2000), although rotation also has its own possible drawbacks (c.f. Jolliffe, 1987).309

We test the utility of this approach here by applying Varimaxrotation to the two leading310

modes (Kaiser, 1958; Richman, 1986) from each iteration of the MCEOF procedure de-311

scribed above, normalizing by the square root of the respective eigenvalue (Jolliffe, 1995).312

The result is a set of rotated loadings and amplitude time series that are nonorthogonal and313

temporally correlated (Jolliffe, 1995; Mestas-Nuñez, 2000).314

2.3.3 Proxy and pseudoproxy application315

For our analysis of the East African paleohydrological proxies, we performed 10,000 iter-316

ations of the MCEOF procedure described above and produced both rotated and unrotated317

modes. Because the sign of the eigenvectors is arbitrary, weset each iteration so the modes318

are consistent across the ensemble. For the Rule N significance test described above, we319

performed 1000 red noise tests for each of the 10,000 ensemble members of the real data.320
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10,000 iterations of the MCEOF analysis, written in MATLAB and run on a recent genera-321

tion (early 2009) quad-core Mac Pro, require approximately72 hours to complete analysis322

of a dataset of 7 sites with 183 time points. We also ran an experimental MCEOF procedure323

out to 100,000 iterations in order to evaluate the number needed to achieve stable results.324

In order to evaluate the skill of our technique, we also developed a complementary325

‘pseudoproxy’ evaluation (Evans et al, 1998; Smerdon, 2011) as a test of whether we could326

recover a known and realistic ‘climate’ signal from a set of simulated and time uncertain327

‘proxy’ time series designed to mimic the actual records. Weused precipitation and tem-328

perature output from the last millennium forced simulationof the National Center for At-329

mospheric Research (NCAR) CSM1.4 coupled ocean-atmosphere model (Ammann et al,330

2007) to develop a time series of moisture balance anomalies(using the Palmer Drought331

Severity Index (PDSI), Palmer, 1965) at the model locationscorresponding to our actual332

proxy sites. We chose to calculate PDSI because it is a reasonable approximation for the cli-333

mate signal encoded by the lake level proxies, which are sensitive to moisture balance rather334

than strictly precipitation. These time series were then downsampled to the resolution of the335

corresponding record and given the same number and type of chronological tiepoints as the336

actual proxy sites to mimic the time-uncertainty. We then analyzed the simulated records337

using the same procedure as outlined above, and compared theextracted MCEOF modes to338

the time-certain EOFs of the moisture balance anomaly series. While we don’t necessarily339

expect nor require that the climate model is a perfect representation of the true climate sys-340

tem in the region in either time or space, it does provide us with a testing environment with341

a known and physically plausible spatiotemporal variability that mimics the actual climate342

of the region (Smerdon, 2011).343

3 Results344

3.1 East African proxies345

A plot of the 68% and 90% two-tailed confidence intervals derived from the iterated age346

model ensemble members for each actual East African proxy site provides a visual assess-347

ment of the age uncertainty in each of seven proxy records (Fig. 2). To a first approximation,348

the age error of each respective record scales to the number of radiocarbon dates, although349

as expected if the radiocarbon ages happen to fall during a plateau in14C production their350

efficacy as a strong constraint is reduced. For example, the dating constraints on the Lake351

Naivaisha lake level record during the Little Ice Age contain relatively large calibration er-352

rors (> 100 calendar years, 2σ ) and thus allow the pluvial period near 1700 CE to shift by as353

much as 200 years (Fig. 2). We also plot the proxy data on theirpublished age models over354

the confidence intervals of the ensemble iterations to compare the originally-constructed355

age-depth relationships with our ensemble predictions (Fig. 2). In most cases, the published356

age models fall within the 90% confidence intervals, although there are some exceptions.357

For example, portions of the Lake Edward record fall along oroutside the edges of the 90%358

confidence interval, as does the punctuated drought in Lake Naivasha near 1250 CE.359

The time series expansion of the two leading unrotated EOFs of the MCEOF analysis360

are shown in Figure 3, along with their 90% (two-tailed) confidence intervals. We only361

extend these back to 1270 CE because loss of the Lake Malawi record beyond that point362

creates a substantial artifact in the covariance matrix, and therefore the time series. The first363

EOF explains 30±6% of the total variance (median, 2-sigma range) and the second EOF364

explains 22%±4% (median, 2-sigma range). For sites that load positively upon EOF1, this365



10

component describes a trend that features a slightly drier Medieval period (1270–1400 CE),366

a pluvial period during the early half of the Little Ice Age (1400–1750 CE), drought during367

the mid-late 18th century, and a recovery to more average conditions towards the present day368

(Fig. 3). For sites that load positively on EOF2, this component captures a trend that features369

a slightly-wetter than average late Medieval Period (1300–1500 CE) followed by progressive370

drying culminating in a drought near the time of the Maunder Minimum (ca. 1700 CE) and371

then a rise toward wetter conditions towards the present day. As described in section 2.2.2,372

we evaluated the significance of these leading EOFs in a number of ways: [1] by scree plot,373

[2] using the Kaiser (1960) criterion, [3] by applying the Preisendorfer and Mobley (1988)374

Rule N with a white noise null hypothesis and [4] by applying Rule N with autoregressive375

noise models conditioned on each proxy data time series. Fig. 4 displays the results of the376

Rule N tests. The first two EOFs are significant at the 90% levelby comparison to the377

white noise null (Fig. 4), as well as always having eigenvalues greater than unity (Kaiser,378

1960). The first two EOFs also exceed the mean AR null hypothesis (Fig. 4), although379

the median eigenvalues do not consistently exceed the 90% confidence level. Based on the380

variety of tests performed, we consider the first two EOFs as potentially interpretable, while381

the third pattern and those beyond appear unstable and degenerate (North et al, 1982) and382

not consistently differentiable from noise.383

A biplot shows the loadings of each lake site upon the first twoEOFs along with their 1-384

sigma range from the 10,000 member ensemble (Fig. 5). Lakes Victoria, Tanganyika, Challa385

and Naivasha load positively on EOF1, whereas Lakes Edward,Masoko and Malawi load386

negatively on EOF1. Most lake sites load positively on EOF2,and none load significantly387

negatively on this mode, although given its uncertainty bounds Lake Naivasha’s weight on388

the second mode is not readily distinct from zero (Fig. 5).389

As described above, we also test a Varimax rotation (see section 2.2.2) of the two leading390

EOFs to investigate the effects of rotation on the time evolution and spatial loadings of the391

leading modes. As expected, the rotation further distinguishes the site groupings already ap-392

parent in the unrotated components; namely, that Lakes Edward, Masoko and Malawi load393

similarly and form one group, whereas Lakes Tanganyika, Victoria, Naivasha and Challa394

load similarly and form a second (Fig. 6). The rotation has relatively little effect on the395

broad-scale temporal trends in the primary EOFs, although the rotation reduces the uncer-396

tainty range in the time series (Fig. 7).397

Our long, 100,000 iteration experiment indicates that, forthis particular set of proxies398

the mean width and variance of the EOF uncertainty bounds stabilize between 5,000 and399

10,000 iterations (Fig. 8). We expect, however, that different applications of this technique400

with different sets of proxy data could require either more or fewer iterations to achieve this401

stability.402

3.2 Pseudoproxies403

Applying the MCEOF methodology to our pseudoproxy experiment reveals that the method404

readily recovers the model-simulated leading mode of East African climate variability (PEOF1),405

but doesn’t resolve many of the temporal features in the second simulated PEOF (Fig. 9).406

The pseudoproxy PEOF1 accounts for 35±6% of the total variance (compared to 45% for407

the time-certain first EOF), while pseudoproxy PEOF2 accounts for 19±5% (compared to408

23% for the time-certain second EOF). PEOF1 successfully reproduces the time evolution409

of the time-certain mode from the CSM1.4 climate model, including a trend toward wetter410

conditions in the early part of the record, sustained wet conditions between model years411
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1500 and 1700 CE, and a decline toward dry conditions betweenthe model’s 18th century412

and the present. PEOF1 also captures the timing of the major decadal scale events. PEOF2413

tracks the centennial-scale patterns of the time-certain second EOF, but fails to accurately414

capture decadal and multidecadal variability. The uncertainty bounds for PEOF2 show that415

the decadal pluvials or droughts can be substantially displaced in time, for instance, in the416

15th and turn of the 19th century. Intriguingly, while we do not expect the model to re-417

produce precisely the true time history of the climate of East Africa, the CSM1.4 PEOF1418

still possesses similar features to those identified in our proxy leading EOF, namely a Little419

Ice Age pluvial. Comparisons of climate model-simulated East African climate to actual420

proxy data are beyond the scope of this paper and are discussed elsewhere (Tierney et al,421

submitted).422

4 Discussion423

4.1 Paleoclimatic interpretability424

The purpose of the MCEOF analysis is to reduce the space of theregional proxy dataset in425

order to identify, and provide an error estimate for, sharedmodes of variance between mul-426

tiple time-uncertain series, with the goal of revealing coherent changes in climate within a427

given region of interest. In this case, our pseudoproxy analyses confirm that the first EOF is428

representative of the true (age-error free) EOF. Based on both our evaluation of its potential429

significance and comparison to the pseudoproxy tests, EOF1 of the East African lacustrine430

proxy data likely has an interpretable, climatically-driven signature. On the other hand, our431

pseudoproxy results indicate that the second EOF has a larger uncertainty particularly at432

decadal and multidecadal time scales and that it is likely more difficult to successfully re-433

cover the true EOF given the age error of our test sites. Our Rule N test on the actual proxy434

data, however, suggests that the mode can be distinguished from noise. We conclude that435

caution should be exercised in interpreting higher-order modes within a climatic context.436

The ability of the technique to recover higher-order modes is also almost certainly related to437

the degree of time uncertainty: here, relatively large timeuncertainties appear to have the ef-438

fect of introducing instability into the second EOF, but given a collection of sites with better439

constrained chronologies lower order modes may be recoverable with greater confidence.440

In interpreting EOFs as potential climate signals, it is important to keep in mind that441

the unrotated EOF analysis constrains spatiotemporal modes to be orthogonal, whereas the442

climate system itself is unlikely to be so. In this case, the MCEOF analysis discriminates443

between paleoclimatic records in the region that indicate pluvial conditions during the Little444

Ice Age from those that record dry or drying conditions, but this does not necessarily imply445

that aspects of the EOF1 pattern or EOF2 pattern exclusivelyoccur at one or another site.446

However, we may still infer broad-scale climatic meaning from the loadings to the extent447

that they are consistent with the geography and climatologyof known aspects of regional448

climate. For example, we note that in the unrotated analysisthe sites that load most promi-449

nently on EOF1 and also have the smallest loadings on EOF2 arethe sites that are located450

farthest to the east of our domain: Lakes Challa and Naivasha(Fig. 5). This may be of cli-451

matic relevance because within East Africa, hydroclimate in the easternmost sector of the452

region is the most sensitive to Indo-Pacific dynamics, including El Niño, which causes en-453

hanced rainfall (Ropelewski and Halpert, 1987; Janowiak, 1988; Nicholson and Kim, 1997;454

Camberlin et al, 2001). It is also reasonable that Victoria and Tanganyika load closely to455

one another; the historical records of lake level fluctuations in Tanganyika and Victoria are456
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remarkably alike (Stager et al, 2007), suggesting the two regions experience similar hydro-457

climatic variability on the multi-decadal scale. Further climatic interpretations of EOF1 are458

discussed elsewhere (Tierney et al, submitted).459

These results demonstrate that the MCEOF approach is capable of advancing our under-460

standing of paleoclimate in a number of ways. For one, the MCEOF highlights the robust461

features that are reliably shared between disparate sites and diverse proxiesand that are462

clearly differentiable in spite of chronological and othersources of uncertainty. In addition,463

the technique may succeed in objectively separating out a primary climatic influence (i.e.,464

that of the Indo-Pacific) from other climatic forcings acting upon different sites to a different465

degree.466

Another useful paleoclimatic application of the MCEOF approach is that the ensemble467

iterations can be used to provide an empirical probabilistic estimate of the mean timing468

– and the uncertainty – of notable paleoclimatic events (droughts, pluvials, and transitional469

periods). For example, many of the East African sites show evidence for droughts during the470

latter portion of the Little Ice Age, and MCEOF1 highlights persistently dry conditions in471

the mid-late 18th century (Fig. 3). To assess the relative timing of these droughts, we can plot472

the year corresponding to the minimum value between 1650–1950 CE for each individual473

proxy ensemble and the EOFs as a histogram (Fig. 10). In addition to providing a visual474

assessment of when drought occurs at each site and range of uncertainty consistent with a475

possible set of age models, the empirical density functionsalso provide a way to estimate476

both the timing of droughts at each individual site as well asthe potential synchronicity477

between sites or in relation to independently known climateforcings. For example, in spite478

of the large age uncertainty of the Lake Naivasha record, we can determine that there is a479

91% chance that the major LIA drought at this lake occurredafter the end of the Maunder480

Minimum (1715 CE), in agreement with the interpretation of Verschuren et al (2000) that481

a wet period prevailed during most of the Maunder Minimum andwas only subsequently482

followed by a severe drought. Furthermore, given that the probability distributions for the483

Maunder Minimum drought at Lakes Masoko and Malawi are approximately normal, we can484

apply a T test for contemporaneity following Long and Rippeteau (1974) to determine that485

there is an 81% likelihood that these droughts occurred at the same time or, stated properly,486

that there is insufficient evidence to reject a null hypothesis of simultaneity.487

The Varimax rotation of the two leadings EOFs has the effect of tightening the empirical488

probability distributions for the droughts identified in EOF1 and EOF2 (Fig. 10). The onset489

of late Little Ice Age dry conditions in REOF1 falls between 1750 CE and 1800 CE, as490

opposed to the more widely distributed drought in the unrotated mode. Similarly, the drought491

in REOF2 falls at 1690 CE± 15 years (1σ ) as opposed to 1710 CE± 50 years (1σ ) in the492

unrotated mode. To some extent the collapse of the drought distribution in the rotated EOFs493

is a function of the mathematics of the pairwise rotation itself: as noted above 3, it separates494

out records that have a wet period during the LIA from those that are dry or drying, and these495

records also happen to have their LIA minima fall in the second half of the 18th century and496

during the Maunder Minimum, respectively.497

4.2 Methodological Considerations and Expansion498

We have presented here a technique that addresses two potential goals when interpreting499

paleoclimate dynamics from time-uncertain proxy data – namely, isolating robust coherence500

between records in the presence of age model error and developing useful estimates of un-501
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certainty. While our approach is designed to be both flexibleand transparent in application,502

there are both advantages and disadvantages associated with the methodology.503

As described in Section 2.2.1, we assume superposition and resample in a manner that504

does not permit age reversals, moving from the top of the coresequence to the bottom. This505

approach is admittedly simplistic compared to formal Bayesian analysis such as those used506

in the programs OxCal (Bronk Ramsey, 1995, 2008) and BACON (Blaauw and Christen,507

2011) but it is relatively straightforward to code, calculate, and conceptualize. When uncer-508

tain radiometric dates are distributed sparsely down-coreour approach performs similarly509

to a full Bayesian approach. Furthermore, comparison between proxy data plotted on our510

iterated time uncertainty with proxy data plotted with the published age models shows gen-511

erally good agreement (Fig. 2) suggesting that our empirical method approximates the age512

modeling decisions made by the respective authors and results in reasonable uncertainty513

bounds. There are some exceptions (see section 3), in which the published models fall near514

or outside the 90% confidence levels. Such differences couldpartially reflect decisions made515

in the original publication to choose a calibrated calendardate within the14C calibration dis-516

tribution that has a relatively low probability, or to use anage model fitting function (linear517

regression, higher order polynomial or flexible spline fit) which may unintentionally pass518

through an unlikely outer bound of the date distributions. Polynomial or spline functions are519

commonly chosen to form age-depth models because of the assumption that changes in sed-520

imentation rates are generally gradual and not instantaneous at the depth/age constraint, as521

would be implicit in simple linear interpolation (Telford et al, 2004a); however, if not prop-522

erly constrained such fits can introduce artificial maxima and minima or force the model to523

pass through low-probability domains (or even outside) of the depth-age constraints. Here,524

we use a piecewise cubic hermite interpolating polynomial function that performs similarly525

to linear interpolation in that it does not allow “overshoots” of the age model in between526

age-depth tiepoints, but unlike linear interpolation doesnot force the model to produce in-527

stantaneous changes in sedimentation rate at each age-depth tiepoint. Our iterative method528

also has a distinct advantage over single-curve age modeling in that it makes use of the529

full probability distribution of each age-depth constraint rather than a point estimate, which530

is a more robust way of treating the highly non-Gaussian radiocarbon dates in particular531

(Telford et al, 2004b; Michczynski, 2007). In addition, theuse of the age model ensemble532

mean or median will inherently smooth over abrupt changes and thus provide an estimate533

for average accumulation rates that is dependent on the uncertainty of the dating constraints534

rather than the choice of depth-to-age fitting function or sometimes difficult to constrain535

prior assumptions about sedimentation rate.536

On the other hand, the choice of imposing superposition in the manner of our method has537

limitations: for sediment cores that have been sampled at very fine intervals for radiometric538

dating, or when a low precision date is closely associated indepth with a high precision date,539

a random draw from the older tail of the age distribution forces the subsequent date toward540

the older limit of its own distribution. The cumulative effect of this tendency can be that541

iterations fall preferentially within the older ends of thedate uncertainty distributions. For542

age modeling of densely-dated sequences, it may therefore be preferable to employ a for-543

mally Bayesian approach (e.g., OxCal; Bronk Ramsey, 1995, 2008). In practice, results from544

OxCal or other Bayesian approaches could be easily implemented into our MCEOF frame-545

work; the posterior age distributions generated within OxCal output could be simply input546

into our iterative age-depth sequence. Indeed, the age-depth modeling within our method is547

intentionally designed to be “modular” in the sense that theuser may employ any kind of548

method according to the needs of each time series’ chronology. In our case, we employ three549

different approaches to iterate age models for the East African data (all with the constraint550
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of superposition) – [1] A random draw from the probability distribution of calibrated14C551

ages, [2] A random draw from a Gaussian distribution (for210Pb dates or other tiepoints),552

and [3] an error methodology tailored for varve counting error that treats counting error as553

independent at each depth interval but cumulative down-core (see section 2.2.1).554

A problem not unique to our application of empirical orthogonal function analysis is the555

interpretability of the spatiotemporal patterns with respect to meaningful physical modes556

of climate variability (Richman, 1986; Dommenget and Latif, 2002; Monahan et al, 2009).557

While rotation of the EOFs does allow the orthogonality constraint to be relaxed (Mestas-558

Nuñez, 2000), this is not a panacea since this operation will itself identify local modes even559

when broad-scale same-sign loadings might be appropriate (Jolliffe, 1987). For example,560

rotation clusters the loading patterns in the East African data (Fig. 6) which could distort561

regional-scale climatic meaning in these patterns. Furthermore, the rotated East African562

EOFs (Fig. 7) have a similar time-evolution as the unrotatedEOFs (Fig. 3), so the advantage563

of applying rotation to further separate meaningful patterns of climatic evolution is not ob-564

vious. However, applied to a larger set of proxies or a different climate regime rotation could565

provide useful for paleoclimate interpretation. Alternative reduced space methods might be566

preferable in some situations; for example, Distinct empirical orthogonal function analysis567

(DEOF; Dommenget, 2007), Simplified EOFs (Jolliffe et al, 2002), or Simplifying EOFs568

(Hannachi et al, 2006). Our MCEOF procedure is intended to beflexible enough to accept569

alternative decompositions appropriate to the data and theclimatic context.570

Finally, it remains unclear how to use and interpret conventional approaches to testing571

for the ‘significance’ of the leading eigenmodes when the records area priori known to in-572

clude a mixture of climate signal and noise. Here we have compared the amount of variance573

explained by these modes with that expected given a variety of null hypotheses (section574

2.2.2). In particular, we take advantage of our ensemble method to assess which modes have575

explained variances that exceed that of high order autoregressive random series following576

the Preisendorfer and Mobley (1988) Rule N approach. Yet we note that in the actual pa-577

leoclimate data, the patterns of common variance reflected in the eigenvalues represent the578

influence of real hydroclimate variability, noise reflecting non-hydroclimatic influences on579

the proxy, and temporal bias arising from the difference between age models and the ‘true’580

depth-to-age relationship. Thus, the Rule N red noise approach alone may not be a useful581

test of ‘significance’. We also note that stratifying the individual ensemble members accord-582

ing to differences from the null model reveals that high common variance modes can occur583

for a number of different age alignments (results not shown). We interpret this to mean that584

rare age model alignments that occur in a small portion of theensemble can result in a large585

amount of variance even though the likelihood of that particular alignment is small. The par-586

titioning of variance when the signal is noisy, the signal isred, and the data points relatively587

few probably provides only a weak constraint on which age model is most valid and which588

modes are ‘significant’. Practically speaking, this means that interpretation of the modes is589

not simply a statistical exercise, but also a geological andclimatological one.590

5 Conclusions591

We have described, tested, and applied a methodology for developing a reduced set of time592

series and their associated spatial patterns of large scalepast climate variability with esti-593

mates of their uncertainty using a combination of Monte Carlo age model resampling and594

empirical orthogonal function analysis. This approach is flexible enough to integrate a di-595

verse set of techniques for resampling from the space of possible age models, can include596
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depth sampling uncertainty, and may be applied across a dataset of varying proxy type, sam-597

pling resolution, and age controls. Our approach also yields ensemble time series for each598

individual record, which themselves can be used in a empirical probabilistic framework to599

make inferences about the timing or concurrence of specific events detected in the paleo-600

climate record. This method is intended to complement existing, in many cases Bayesian601

(e.g. Bronk Ramsey, 1995), techniques for developing optimal age models from imprecisely602

dated records.603

When applied to a set of time-uncertain, decadal-resolution lake sediment proxy records604

of past hydroclimate in East Africa, our approach suggests that the first EOF is “recover-605

able” given the age uncertainty and is therefore climatically interpretable. EOF1 describes606

overall wetter conditions in the early Little Ice Age, a somewhat drier Medieval Climate607

Anomaly, and sustained decadal-scale drought conditions in the second half of the 18th cen-608

tury. The loading pattern of this mode hints at an Indo-Pacific influence, a known driver of609

climate in the East African region. Generally speaking, ourmethod provides estimates of610

the common large-scale variability that can be identified despite known uncertainties and611

provides a framework for comparing both securely dated and time uncertain paleoclimate612

evidence over a large region. Our procedure to some extent formalizes the caution implicitly613

shown by investigators of time-uncertain records in gauging which features of these records614

are reliable enough to warrant climatic interpretation, and provides a manner with which to615

identify features of records that are robust given various sources of proxy and chronological616

uncertainty.617
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Table 1 A list of the paleoclimate proxy data used in our test of the MCEOF method, including lake site
name, type of proxy, length of the record, average time interval of the respective proxy data, types of chrono-
logical controls (dating type) and source publication(s).YOC = year of collection.

Lake Proxy Oldest
Record

Average
∆ T

Dating Type Number
of Dates

References

Challa Branched and Isoprenoidal
Index (BIT; run-off proxy)

22971
BCE

33 Varves (for last 2 ka),
verified with 210Pb and
14C

N/A Verschuren et al (2009);
Wolff et al (2011)

Naivasha Lake-level reconstruction
based on sediment stratig-
raphy, fossil diatoms and
midge assemblages

CE 884 3 14C, 210Pb, YOC, his-
torical marker horizons
including Salvinia
molesta outbreaks and
Daphniaeggs

20 Verschuren et al (2000);
Verschuren (2001)

Victoria % Shallow Water Diatoms
(Lake-level proxy)

1032 CE 5 14C and coretop age via
cross-core correlation

7 Stager et al (2005)

Edward % Mg/Ca in authigenic
calcite (Lake-level proxy)

552 CE 4 14C, coretop age via
cross-core correlation

21 Russell and Johnson
(2007)

Tanganyika Charcoal (Aridity proxy) 690 CE 10 14C, 210Pb and coretop
age via cross-core cor-
relation

12 Tierney et al (2010)

Masoko Low-field magnetic sus-
ceptibility (run-off proxy)

BCE
43307

10 14C, cross-core correla-
tion, YOC, tephra

7 Gibert et al (2002);
Garcin et al (2006,
2007)

Malawi Terrigenous Mass Accu-
mulation Rate (MAR; run-
off proxy)

1270 CE 6 Varves, verified with
210Pb and tephra layers

N/A Johnson et al (2001);
Brown and Johnson
(2005); Johnson and
McCave (2008)
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Fig. 2 Time uncertainty in each of the seven East African paleoclimate records. The center line represents the
proxy data on their published age model, and the shadings represent the empirical 68% and 90% confidence
intervals as a result of 10,000 iterations of age-depth models in the MCEOF procedure. Red triangles above
the plots indicate the location of age-depth tiepoints. Sites with varve chronologies (Challa and Malawi) have
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