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Abstract High-resolution sedimentary paleoclimate proxy recoiffr éhe potential to ex-
pand the detection and analysis of decadal- to cententedé-<limate variability during
recent millennia, particularly within regions where titgmtial high-resolution proxies may
be short, sparse, or absent. However, time uncertaintyeisetihecords potentially limits a
straightforward objective identification of broad-scakdtprns of climate variability. Here,
we describe a procedure for identifying common patterngaftistemporal variability from
time uncertain sedimentary records. This approach, whielenm Monte Carlo Empirical
Orthogonal Function (MCEOF) analysis, uses iterative agéeating and eigendecompo-
sition of proxy time series to isolate common regional pageand estimate uncertainties.
As a test case, we apply this procedure to a diverse set ofuimoertain lacustrine proxy
records from East Africa. We also perform a pseudoproxy exmat using climate model
output to examine the ability of the method to extract sharemmalies given known signals.
We discuss the advantages and disadvantages of our appradoting possible extensions
of the technique.

Keywords paleoclimate- Africa - empirical orthogonal functions Monte Carlo-
uncertainty- geochronology

1 Introduction

Large-scale climate reconstructions over the last twoemilla (the ‘Common Era’) often
rely on the use of climatic proxies that are precisely dasemually resolved, and overlap
with instrumental climate data: e.g. tree rings, coralsyed sediments and annually-layered
ice cores (e.g. Fritts et al, 1971; Fritts, 1991; Cook et 894t Mann et al, 1998; Cook
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et al, 1999; Evans et al, 2002; Esper et al, 2002; Hegerl 20dl7; Jansen et al, 2007;
Jones et al, 2009; Cook et al, 2010). Such proxies have amtdein that they can be
reliably calibrated and statistically validated agaimgt instrumental record and are known
to reflect seasonal to centennial climate variability. Hosve one potential disadvantage
of this class of proxy archives is that, with some exceptidhsy are relatively short in
duration; for instance, the longest continuous coral @espan approximately 300 to 400
years (Gagan et al, 2000; Lough, 2010) and the majority efrireg chronologies cover the
last millennium or less (with some notable exceptions, keaddarche, 1974; Pilcher et al,
1984; Lara and Villalba, 1993; Cook et al, 2000; Grudd et@)2 Salzer and Hughes, 2007;
Bintgen et al, 2011). Thus, reconstructions relying orhsarchives may not completely
capture low frequency climate variability at multi-cemé time scales (e.g. Cook et al,
1995) or they may span only a portion of the Common Era. Perlb&greater concern,
however, is that there are areas on Earth where traditidghtresolution climate archives
are sparse or thus far unavailable, including some terégsipical regions where trees do
not form reliable annual rings and over much of the globakoce

Lake and ocean sediment records provide a source of lonjnaons climate records
that retain low-frequency variability, and in doing so cdhifi gaps in the climate history
of the late Holocene left by annually-resolved archivesathktime and space. Sediment
archives also have an advantage in that they are availablenmych of the Earth’s surface.
A primary limitation of sedimentary archives, however, gt they typically lack annual
resolution and are only rarely absolutely dated. Sedinmgmtzords often rely instead on
radiometric dating methods (e H.C, 21°Pb) which endow the archive with an uncertainty
in time related to both the precision of the dating methodthedensity of dates down the
length of the core. In particular, radiocarbdfiE) dating via accelerated mass spectrometry
(AMS) typically carries an analytical error on the order @80 years, and this is com-
pounded with the uncertainty involved in translating radidoon years to calendar years,
a relationship that varies depending on the Sun’s modulatfothe atmospheric produc-
tion rate of1*C. When the'*C year/calendar year relationship deviates significamtiynf
a one-to-one relationship — for instance, during the Maumi@imum (1645-1715 CE)
when the'C concentration in the atmosphere was anomalously highieaadbon dating
uncertainty may exceed 100 calendar years. While such taimgrmay be relatively incon-
sequential for the interpretation of sediment proxies @nxatbital or multi-millennial scale,
on shorter timescales such as the last millennium it preseptoblem: it becomes difficult
to establish the precise timing of major climate events endécadal, multi-decadal, and
centennial scale, or to determine whether two or more timesare coherent and record
common regional changes in climate. Furthermore, in ordesfatistically calibrated and
validated climate reconstructions to combine lower-feagty time uncertain records with
high-frequency, absolutely-dated time series — an apprdizat is increasingly being ex-
plored (e.g. Moberg et al, 2005; Kaufman et al, 2009) — theleds to be a robust way to
account for the time-uncertainty introduced by sedimeotm@s. Within an individual sedi-
ment core, time uncertainty can be reduced by dating sedamneunits densely enough such
that the overlapping dates are reduced in their uncertéiptyne principle of stratigraphic
superposition, or such that the rafC dates can be tightly ‘wiggle-matched’ directly to the
14C production curve (Blaauw et al, 2003). However, given tigd lanalytical costs of*C
analysis, this is not always a practical approach.

Here, we present a simple, transparent and broadly-apfgigarocedure that can be
used to assess time uncertainty in proxy records while iigérg coherent spatiotemporal
variability between multiple independent time-uncertéine series. This approach, which
we call “Monte Carlo Empirical Orthogonal Function” (MCED&nalysis, iteratively calcu-
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lates depth-to-age models for each respective time-wingstoxy record of interest taking
into account individual age model constraints, then deas®g the set of records into pat-
terns in space and amplitude principal components seri@sié By iteratively conducting
many thousands of simulations, we are able to assess thetmelss and estimate uncertainty
surrounding patterns of paleoclimate change defined by-tinoertain records in both time
and space. Furthermore, the simulations offer a method lighwib empirically and statis-
tically assess the synchronicity of major abrupt climatenés recorded in disparate proxy
datasets, including abrupt droughts or pluvials.

As proof of concept, we apply this technique to seven lamesipaleohydrological re-
constructions from East Africa. East Africa is a region vehannually-resolved archives are
thus far relatively sparse: in particular, tree-ring avekiare few (Stahle, 1999; Verschuren,
2004). Rather, most of the paleoclimatic data from thisaegire proxies measured in lake
sediment cores, the majority of which are dated using radtdmtechniques (e.g. Ver-
schuren et al, 2000; Stager et al, 2005; Russell and Joh280#7). The East African region
is thus as an ideal target for MCEOF analysis. We furtheruatalthe skill of our technique
in recovering coherent large-scale climate variabilitingsa set of ‘pseudoproxies’ — sim-
ulated time series intended to mimic the actual proxy rexc@Evans et al, 1998; Smerdon,
2011) — generated from a last millennium climate model satioh. Here, we focus on dis-
cussing how application of MCEOF to East African hydrocliemeeconstruction illustrates
the capabilities and limitations of the technique. Thedasgale climatic implications of the
MCEOF analysis are investigated in-depth elsewhere (ieet al, submitted).

As we describe below, the MCEOF approach can be generalliedgp any collection
of paleoclimatic reconstructions that are time-uncertaime technique is intended to be
modular and flexible enough to incorporate a diverse set@fyprecords, dating methods,
and age modelling approaches.

2 Data and Methods
2.1 Proxy and chronological data

For our test analysis of regional changes in hydrology dutire past millennium in East
Africa, we utilized seven paleohydrological time seriesnirthe region (Fig. 1) that [1]
use a proxy interpreted to predominantly reflect changeyadndelimate, [2] contain data
analyzed at a mean time interval of 50 years or less, [3] aoatdeast seven depth-age tie-
points, [4] contain a least one data point representativaarfern & 1950 CE) conditions
and [5] have a reasonably well-constrained stratigrapRky, thinimal evidence of turbidites,
reworking, large hiatuses in sedimentation). Table 1 surizes the literature references,
chronological controls, average time-resolution, proxyetand length associated of each
time series. We used the proxy data “as is,” i.e., as predéntine source publication with
a few exceptions: [1] if necessary, proxy records were @itett at the core depth associated
with the last age control point within the last 2000 yearirf2he case of Lake Masoko, two
records of magnetic susceptibility are available from ghe| from two different cores — one
that extends to approximately 1500 CE (Garcin et al, 200@)aanother that extends back to
ca. 43,300 BCE (Garcin et al, 2006). To cover the entiretyheflast millennium, we used
the longer record, but translated tH8Pb age control points from the depths in the shorter
core to equivalent depths in the longer core, taking adgenté the fact that for their period
of overlap, the two records of magnetic susceptibility aghly and significantly correlated
(r=0.90, p = 0.0002; Monte Carlo test; Ebisuzaki, 1997);tf# charcoal data from Lake
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Tanganyika were log-transformed to account for the styosgewed distribution of these
data.

Various methods were used by the authors of the African patrological data to
provide chronological control, including AMB'C dating, unsupportet°Pb dating, iden-
tification of known tephra layers and varve counting (TableRecognizing that each type
of dating method has a different kind of error distributiore treat the different classes of
dating methods accordingly in our MCEOF procedure as dasdribelow. We assume that
year-of-collection assignments and historical markeiZoms have no error associated with
them, except if otherwise indicated in the source publicatWe assume th&l°Pb dates,
cross-core correlations and tephra markers have errocdimabe approximated by a Gaus-
sian distribution and if not specified in the source publaatthe 1o error was assumed
to be 5 years. Of the seven records, two utilize varve chogiets (Lake Malawi and Lake
Challa) and in that case uncertainty is based on an estirhptgential errors in identifying
and counting the annual layers. The estimated uncertantié Lake Malawi varve stratig-
raphy ist+ 0.5 annual varve couplets (0.5 years) at each stratigrdyahizon (Johnson and
McCave, 2008). The estimated uncertainty for the Lake @hallve stratigraphy is- 0.3
annual varve couplets (C. Wolff, pers. comm.).

Uncertainty associated witHC dating is more complicated, as the translatiod 4
years into calendar years is a function of #1€ production rate in the atmosphere and
therefore varies in time. Furthermor®'C dates on total organic carbon (TOC) in lakes
often reflect a lake-specific radiocarbon reservoir, whigh be substantial (i.e. 500-1000
years) in hardwater lakes or large lakes with a permanestiiaied hypolimnion. Of the
seven lakes, two (Victoria and Tanganyika) have radiogarbseervoirs and TO&'C dates,
thus requiring that the dates be corrected prior to calimato calendar years. In each
of these studies, the authors determine the Idiereservoir correction via use of paired
terrestrial macrofossil and lake TG¢C dates or paire@'°Pb and™*C dates from the same
stratigraphic horizon, but do not provide an estimate ajregissociated with these reservoir
corrections. Since we do not have error information we assfonthe purposes of this
study that any reservoir corrections made by the authorsotibave an error, although in
principle known reservoir errors could be compounded withanalytical*C error prior to
calibration to calendar years.

To treat the**C dates between the seven records consistently, we reatalibe raw (or
reservoir-corrected}*C ages provided in each source publication using the In&Cel@ve
(Reimer et al, 2009) and CALIB 6.0 (Stuiver and Reimer, 19983 we use the resulting
calendar-age empirical probability distributions durthg age model iterations described
below. These distributions are often highly non-Gaussieshape, containing plateaus and
multiple maxima.

In many cases, the authors of the individual limnologicatigts omitted “reversed*C
ages — dates whose mean calibrated calendar year desigwatialder than the date below
it within the stratigraphic column and thus potentiallylai@s the principle of superposition.
This is not an uncommon feature of radiometric age modetirdgpositional environments,
and often arises due to the reworking of older sedimentatgmador bioturbation. Here, we
reincorporate some of these as potential additional agatenwhile still omitting those
reversed dates where the probability of randomly drawingt @kdates between an ordered
date and a potentially reversed date in stratigraphic asdess than 5%.
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2.2 A Monte Carlo Empirical Orthogonal Function Approach

We seek a reduced set of spatial and temporal variablesstiiaté the dominant modes of
regional paleoclimate variability amongst a set of proxgores and that also account for the
time uncertainty inherent to each individual record. Owcadure therefore involves itera-
tion of two integrated steps: First, we independently rgsdarthe individual age models for
each lacustrine proxy record using their radiometric aheiage controls and their respec-
tive uncertainty, then we decompose each set of resampbeg pecords into their leading
spatiotemporal modes using empirical orthogonal func{le@F) analysis. This procedure
is repeated many thousands of times, resulting in boopstiipnsembles of possible proxy
records, EOF loadings, and EOF time series expansions eficked by different age-depth
models.

2.2.1 Iterative Age-Depth modeling

As described in Section 2.1 above, each proxy record is niajgpealendar years using a set
of age-depth relationships, each with its own uncertaifitgre has been considerable focus
on developing methods for creating an optimal age model f&ingle sediment core (e.qg.
Blaauw et al, 2003; Telford et al, 2004a; Heegaard et al, 2B&kley et al, 2007; Bronk
Ramsey, 2008; Goslar et al, 2009; Blaauw, 2010; Blaauw armist€h, 2011). Here we
take an alternative approach: instead of modeling a singfienal age-depth relationship,
we iteratively resample from the probability distributioh possible dates in each record
and develop an ensemble of thousands of possible proxy gnesshat are consistent with
the age determinations, their estimated uncertainty, tmatigraphic position. In practical
terms, for each age constraint in each individual proxymdor each iteration we indepen-
dently draw a possible date from the probability distribotof possible ages, and use these
to create a new age model. This process is continued for émchalogical constraints. Our
approach is similar in spirit to Bayesian iterative teclueis| — which have been applied to
age-modeling previously in a similar manner (e.g. Blaaual,e2007; Bronk Ramsey, 2008;
Blaauw and Christen, 2011) — but here we make no prior assomspabout sedimentation
rates. The only assumption we make is that of superpositiahage of sediments increases
as one moves downcore. We enforce this requirement moviwg-gdection, following the
assumption that typically the researcher has tighter ciogical constraints near the top
of the sediment core (such &9Pb dating and the date of collection) than farther down in
the sedimentary sequence. For each age model iteratiorhause a date within the uncer-
tainty bounds of the top-most chronological constraint teh if necessary exclude areas
of the uncertainty envelope in the subsequent chronolbdatapoint that would violate su-
perposition. We then fit an age model to the subsequent dmgttpairs using a monotonic
piecewise cubic hermite polynomial function (Carlson amitisEh, 1985), which smooths
over abrupt changes in sedimentation rates at tiepointsridike a spline function does not
permit unrealistic overshoots of the age model betweewitiep In practice, linear interpo-
lation yields quite similar results.

Some sediment proxy records have a unique set of chronalagosiderations that may
require a different approach to age-depth modelling tharbtsic one described above. For
instance, Lakes Challa and Malawi have varve chronologied,so we model their age un-
certainty in a unique way: we assume that counting estin@t®e®quivalent to a 1-sigma
value of a Gaussian error distribution, and that the erraritve counting is independent
between respective stratigraphic horizons. To iteratbiwithis dating constraint, we ran-
domly sample an error value from a Gaussian distributioh witnean of zero and standard
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deviation of the varve counting error at each depth inteatakhich the proxy was mea-
sured in the core, with the added constraint of superposifibis simulates the possibility
of erroneously missing or identifying a varve, and this ethen accumulates or attenuates
along the length of the core.

Some sedimentary time-uncertain sequences may contaiy preasurements below
the last chronological control point. For example, the diottof the Lake Victoria record
spans beyond the last radiometric date, and so in the ofigmace publication it is an-
chored by extending the inferred sedimentation rate froendé&ted portion of the top of
the core (Stager et al, 2005). We mimic this procedure herfittinyg a line to the upcore
resampled ages at each iteration and using the least sgagression equation to establish
a bottom date.

Finally, in some cases such a large depth unit was samplatidarhronological mea-
surement that is it appropriate to take into account errodepth as well. This is the case for
the Lake Naivasha data, and so we also consider additionatainty in the corresponding
depth of the of the material used for radiometric dates bgumgding from a Gaussian dis-
tribution reflecting the range of possible values (Versehwet al, 2000; Verschuren, 2001).

2.2.2 Empirical orthogonal functions

Empirical orthogonal function (EOF) analysis decompo$escdommon variance in a col-
lection of individual time series into a few leading, low erdorthogonal ‘modes’ (for an

overview of EOF analysis see Preisendorfer and Mobley, 1388ffe, 2002; Navarra and

Simoncini, 2010). The resulting time series and the astosjaatial patterns, or loadings,
can be used to identify and analyze common or robust spatpmeal variability from a large

set of proxy records. Let us represent a time series of pralgoglimate data as vector of
lengthn

X = (%i(1),%(2),...,%(n)) @

For a collection of individual proxy paleoclimate timesiserof lengthn from m sites,
we can construct the original data matkx

x1(1) x1(2) ... x1(n)

X2(1) X2(2) ... X2(n)
X = . )

Xm(1) Xm(2) ... ()

In order to be able to perform the empirical orthogonal dguosition of the data ma-
trix, the different proxy series are linearly interpolateda common time step; in the case
of the East Africa analyses performed here, we interpolata time-step of 5 years. In
practical terms, we have constructed a matrix where eachefbects the data from a differ-
ent proxy site, and time changes are regular intervals frolomen to column. Because the
individual proxy records each have their own dimension eissed with the measurement
scale of the various analyses, for comparison the timessede be made non-dimensional
(standardized) by removing the meanf each and setting the standard deviasaa unity
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3 =—— )

The correlation matriR of the scaled data is then given by

R= rllzzT (4)

For paleoclimate applications, aligning each record sheh the direction of the time
series anomalies indicates the same qualitative intexfiwatof past climate conditions (e.g.
positive anomalies always indicate wet conditions and teganomalies, dry conditions)
facilitates interpretation. This may require changingstigm of some records such that same
signed anomalies have the same climatic interpretation.

Empirical orthogonal function (EOF) analysis decompobkescbrrelation matrix of the
proxy series into a set oh orthogonal eigenvectorsand their corresponding eigenvalues
o

R=UsU" (5)

We refer to the eigenvectors as ‘loadings’. Projecting themalized data matrix onto
these yields am by n set of corresponding uncorrelated temporal scores, ampt or
time seriedA:

A=2ZU (6)

In practice, the singular value decomposition of the nanedisional data matrix
yields the same results. Note that, because the sign ofgeeactors is arbitrary, it may be
necessary to examine the results of the decomposition &r tocensure consistent physical
interpretability across iterations. The percent of thalteariance from the original proxy
records associated with each niglvmode is given by:

foj

m
Zloi
i=

)

2.3 Method application and evaluation
2.3.1 Significance testing

The eigenvalues, and by extension the variance explaineshbly new variable, offer an
opportunity to evaluate which of the leading modes areyikelbe meaningful or separable
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from noise. Such criteria can be thought of as an assessrhstattistical significance with
respect to the same procedures when applied to an appeopradtmodel. Kaiser (1960)
suggested retaining only those modes with eigenvalues &aorrelation matrices greater
than unity. Cattell (1966) proposed using a scree plot totiflewhere the slope of the or-
dered eigenvalues appears to ‘level off’, and North et aB)9Provided a rule of thumb
based on identifying degenerate EOFs that are a functioaropbng noise. As an alterna-
tive, non-parametric approach, Monte Carlo methods — wénetuate the data eigenvalues
against a white or red noise null model (Preisendorfer andl&o 1988) — provide a per-
haps more rigorous test for significance, although it shbeldoted that even here what is
being tested is not the physical interpretability of anyegiimode, but rather whether they
are likely to differ from a reasonable null hypothesis.

We apply a test similar to Preisendorfer’s ‘Rule N’ (Preiderfier and Mobley, 1988) in
order to evaluate how the low order modes of climate vaiiighiil the regional set of proxy
data compare to those that can arise from random noise tines séor our null hypothesis,
we created synthetic, random time series based on [1] Gausgiite noise and [2] ‘red’
noise, with parameters derived from autoregressive (ARJetmofitted to the actual data
series (Schneider and Neumaier, 2001). The order of the ABeleavas determined by
Schwarz’s Bayesian Criterion. The set of random time senieshen subjected to the same
EOF analysis described above and their eigenvalues cothpéttethose from the ensemble
from the actual data. We performed 1000 red noise tests fdr eithe 10,000 ensemble
members of the real data.

2.3.2 Orthogonal rotation

The methods described above produce a reduced set of onlogwdes that reflect pat-
terns of common variability in space and time in the origjpralxy data. While this approach
is efficient for reducing the dataset, the orthogonalitystm@int almost certainly places lim-
its on the interpretation of the modes in terms of their ptaisiclimatological associations
(c.f. Richman, 1986; Dommenget and Latif, 2002; Dommerf@®y7; Hannachi et al, 2007,
Monahan et al, 2009). That is, climate variability for a myis likely to be a composite
of forced and unforced variability that are possibly catet! in time and space, each with
their own magnitude and preferred time scales of varigb{lilonahan et al, 2009). One
approach commonly used to isolate more ‘local’ modes ofmlity in a set of space-time
records that allows relaxation of orthogonality constisiis rotation of the eigenvectors
such that the new loadings cluster either near unity or near (Richman, 1986; Mestas-
Nufiez, 2000), although rotation also has its own possildgvibacks (c.f. Jolliffe, 1987).
We test the utility of this approach here by applying Varinmatation to the two leading
modes (Kaiser, 1958; Richman, 1986) from each iteratiorhefNICEOF procedure de-
scribed above, normalizing by the square root of the resmeetgenvalue (Jolliffe, 1995).
The result is a set of rotated loadings and amplitude timesénat are nonorthogonal and
temporally correlated (Jolliffe, 1995; Mestas-NufieZ)@0

2.3.3 Proxy and pseudoproxy application

For our analysis of the East African paleohydrological pgexwe performed 10,000 iter-
ations of the MCEOF procedure described above and produathdrétated and unrotated
modes. Because the sign of the eigenvectors is arbitrargetveach iteration so the modes
are consistent across the ensemble. For the Rule N sigruédast described above, we
performed 1000 red noise tests for each of the 10,000 ensamdainbers of the real data.



321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

10,000 iterations of the MCEOF analysis, written in MATLABdarun on a recent genera-
tion (early 2009) quad-core Mac Pro, require approximaf@yours to complete analysis
of a dataset of 7 sites with 183 time points. We also ran anrerpatal MCEOF procedure
out to 100,000 iterations in order to evaluate the numbedeekéo achieve stable results.

In order to evaluate the skill of our technique, we also dapedl a complementary
‘pseudoproxy’ evaluation (Evans et al, 1998; Smerdon, 2@%% test of whether we could
recover a known and realistic ‘climate’ signal from a set iofiidated and time uncertain
‘proxy’ time series designed to mimic the actual records. (Wed precipitation and tem-
perature output from the last millennium forced simulatiadrthe National Center for At-
mospheric Research (NCAR) CSM1.4 coupled ocean-atmosphedel (Ammann et al,
2007) to develop a time series of moisture balance anom@lssg the Palmer Drought
Severity Index (PDSI), Palmer, 1965) at the model locatiomsesponding to our actual
proxy sites. We chose to calculate PDSI because it is a rabEapproximation for the cli-
mate signal encoded by the lake level proxies, which aretsen® moisture balance rather
than strictly precipitation. These time series were themrd@mpled to the resolution of the
corresponding record and given the same number and typeaiabgical tiepoints as the
actual proxy sites to mimic the time-uncertainty. We thealgred the simulated records
using the same procedure as outlined above, and comparedttheted MCEOF modes to
the time-certain EOFs of the moisture balance anomaly sef#hile we don’t necessarily
expect nor require that the climate model is a perfect remtasion of the true climate sys-
tem in the region in either time or space, it does provide ub wiesting environment with
a known and physically plausible spatiotemporal varigbtthat mimics the actual climate
of the region (Smerdon, 2011).

3 Results
3.1 East African proxies

A plot of the 68% and 90% two-tailed confidence intervals d&tifrom the iterated age
model ensemble members for each actual East African proeypsivides a visual assess-
ment of the age uncertainty in each of seven proxy records & To a first approximation,
the age error of each respective record scales to the nurhbadliocarbon dates, although
as expected if the radiocarbon ages happen to fall duringteal in**C production their
efficacy as a strong constraint is reduced. For example,atiegdconstraints on the Lake
Naivaisha lake level record during the Little Ice Age contalatively large calibration er-
rors (> 100 calendar years@d and thus allow the pluvial period near 1700 CE to shift by as
much as 200 years (Fig. 2). We also plot the proxy data on phlished age models over
the confidence intervals of the ensemble iterations to coentiee originally-constructed
age-depth relationships with our ensemble predictiorg. @i In most cases, the published
age models fall within the 90% confidence intervals, althotitere are some exceptions.
For example, portions of the Lake Edward record fall alonguwside the edges of the 90%
confidence interval, as does the punctuated drought in Lalkeasha near 1250 CE.

The time series expansion of the two leading unrotated E@HsedVICEOF analysis
are shown in Figure 3, along with their 90% (two-tailed) cdefice intervals. We only
extend these back to 1270 CE because loss of the Lake Malawidrdeyond that point
creates a substantial artifact in the covariance matrik taarefore the time series. The first
EOF explains 3&6% of the total variance (median, 2-sigma range) and thenseE®F
explains 22%-4% (median, 2-sigma range). For sites that load positivpnuEOF1, this
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component describes a trend that features a slightly drestiéwal period (1270-1400 CE),
a pluvial period during the early half of the Little Ice Aged(0-1750 CE), drought during
the mid-late 18th century, and a recovery to more averagditomns towards the present day
(Fig. 3). For sites that load positively on EOF2, this comgrarcaptures a trend that features
a slightly-wetter than average late Medieval Period (13806 CE) followed by progressive
drying culminating in a drought near the time of the MaundéniMum (ca. 1700 CE) and
then a rise toward wetter conditions towards the presentAtagescribed in section 2.2.2,
we evaluated the significance of these leading EOFs in a nuaflveays: [1] by scree plot,
[2] using the Kaiser (1960) criterion, [3] by applying theeendorfer and Maobley (1988)
Rule N with a white noise null hypothesis and [4] by applyingl&®RN with autoregressive
noise models conditioned on each proxy data time series4rdgsplays the results of the
Rule N tests. The first two EOFs are significant at the 90% lbyetomparison to the
white noise null (Fig. 4), as well as always having eigenealgreater than unity (Kaiser,
1960). The first two EOFs also exceed the mean AR null hypsth&sg. 4), although
the median eigenvalues do not consistently exceed the 9@ideace level. Based on the
variety of tests performed, we consider the first two EOFsgentially interpretable, while
the third pattern and those beyond appear unstable and etegeriNorth et al, 1982) and
not consistently differentiable from noise.

A biplot shows the loadings of each lake site upon the firstB@d-s along with their 1-
sigma range from the 10,000 member ensemble (Fig. 5). Lalésrid, Tanganyika, Challa
and Naivasha load positively on EOF1, whereas Lakes Edwéadpko and Malawi load
negatively on EOF1. Most lake sites load positively on EC&#] none load significantly
negatively on this mode, although given its uncertaintyrtstsuLake Naivasha’s weight on
the second mode is not readily distinct from zero (Fig. 5).

As described above, we also test a Varimax rotation (semsaetR.2) of the two leading
EOFs to investigate the effects of rotation on the time daiahuand spatial loadings of the
leading modes. As expected, the rotation further dististges the site groupings already ap-
parent in the unrotated components; namely, that Lakes Egwéasoko and Malawi load
similarly and form one group, whereas Lakes Tanganyikatovi@, Naivasha and Challa
load similarly and form a second (Fig. 6). The rotation hdatreely little effect on the
broad-scale temporal trends in the primary EOFs, althobghrdtation reduces the uncer-
tainty range in the time series (Fig. 7).

Our long, 100,000 iteration experiment indicates that tiis particular set of proxies
the mean width and variance of the EOF uncertainty boundsligeabetween 5,000 and
10,000 iterations (Fig. 8). We expect, however, that diffierapplications of this technique
with different sets of proxy data could require either maréewver iterations to achieve this
stability.

3.2 Pseudoproxies

Applying the MCEOF methodology to our pseudoproxy experiteveals that the method
readily recovers the model-simulated leading mode of E&stan climate variability (PEOF1),
but doesn'’t resolve many of the temporal features in thergesomulated PEOF (Fig. 9).
The pseudoproxy PEOF1 accounts foe:88% of the total variance (compared to 45% for
the time-certain first EOF), while pseudoproxy PEOF2 actoior 19+5% (compared to
23% for the time-certain second EOF). PEOF1 successfylisodeices the time evolution
of the time-certain mode from the CSM1.4 climate model,udaig a trend toward wetter
conditions in the early part of the record, sustained weditmms between model years



412

413

414

415

416

418

419

420

421

422

423

424

425

426

427

428

429

430

432

433

434

435

436

437

438

439

440

441

442

443

444

446

447

448

449

450

451

452

453

454

455

456

11

1500 and 1700 CE, and a decline toward dry conditions betwee=model’s 18th century
and the present. PEOF1 also captures the timing of the me@adal scale events. PEOF2
tracks the centennial-scale patterns of the time-ceredorsd EOF, but fails to accurately
capture decadal and multidecadal variability. The ungastdounds for PEOF2 show that
the decadal pluvials or droughts can be substantially aisal in time, for instance, in the
15th and turn of the 19th century. Intriguingly, while we dot mxpect the model to re-
produce precisely the true time history of the climate oftE&sca, the CSM1.4 PEOF1
still possesses similar features to those identified in caxypleading EOF, namely a Little
Ice Age pluvial. Comparisons of climate model-simulatedgtEafrican climate to actual
proxy data are beyond the scope of this paper and are distatsmvhere (Tierney et al,
submitted).

4 Discussion
4.1 Paleoclimatic interpretability

The purpose of the MCEOF analysis is to reduce the space oégfienal proxy dataset in
order to identify, and provide an error estimate for, shanedles of variance between mul-
tiple time-uncertain series, with the goal of revealinga@mt changes in climate within a
given region of interest. In this case, our pseudoproxyyaesl confirm that the first EOF is
representative of the true (age-error free) EOF. Based tindag evaluation of its potential
significance and comparison to the pseudoproxy tests, E®thE &ast African lacustrine
proxy data likely has an interpretable, climatically-@rivsignature. On the other hand, our
pseudoproxy results indicate that the second EOF has a langertainty particularly at
decadal and multidecadal time scales and that it is likelyendlifficult to successfully re-
cover the true EOF given the age error of our test sites. Oler Riiest on the actual proxy
data, however, suggests that the mode can be distinguistiednioise. We conclude that
caution should be exercised in interpreting higher-orded@s within a climatic context.
The ability of the technique to recover higher-order modesso almost certainly related to
the degree of time uncertainty: here, relatively large timeertainties appear to have the ef-
fect of introducing instability into the second EOF, buteagiva collection of sites with better
constrained chronologies lower order modes may be recdoleevdth greater confidence.

In interpreting EOFs as potential climate signals, it is @mignt to keep in mind that
the unrotated EOF analysis constrains spatiotemporal sniodee orthogonal, whereas the
climate system itself is unlikely to be so. In this case, the MDF analysis discriminates
between paleoclimatic records in the region that indicateial conditions during the Little
Ice Age from those that record dry or drying conditions, Ihig tloes not necessarily imply
that aspects of the EOF1 pattern or EOF2 pattern exclusoayr at one or another site.
However, we may still infer broad-scale climatic meaningnirthe loadings to the extent
that they are consistent with the geography and climatotdigshown aspects of regional
climate. For example, we note that in the unrotated anatiisisites that load most promi-
nently on EOF1 and also have the smallest loadings on EOFharstes that are located
farthest to the east of our domain: Lakes Challa and NaivéSiga5). This may be of cli-
matic relevance because within East Africa, hydroclimatéhe easternmost sector of the
region is the most sensitive to Indo-Pacific dynamics, idiclg El Nifio, which causes en-
hanced rainfall (Ropelewski and Halpert, 1987; Janowi@B81 Nicholson and Kim, 1997;
Camberlin et al, 2001). It is also reasonable that Victorid danganyika load closely to
one another; the historical records of lake level fluctustim Tanganyika and Victoria are
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remarkably alike (Stager et al, 2007), suggesting the tgmns experience similar hydro-
climatic variability on the multi-decadal scale. Furthématic interpretations of EOF1 are
discussed elsewhere (Tierney et al, submitted).

These results demonstrate that the MCEOF approach is eapladdivancing our under-
standing of paleoclimate in a number of ways. For one, the MEIBighlights the robust
features that are reliably shared between disparate sitkgligerse proxiesnd that are
clearly differentiable in spite of chronological and otseurces of uncertainty. In addition,
the technigue may succeed in objectively separating ouingapy climatic influence (i.e.,
that of the Indo-Pacific) from other climatic forcings agtimpon different sites to a different
degree.

Another useful paleoclimatic application of the MCEOF ajgwh is that the ensemble
iterations can be used to provide an empirical probalilisttimate of the mean timing
— and the uncertainty — of notable paleoclimatic eventsugints, pluvials, and transitional
periods). For example, many of the East African sites shadeexce for droughts during the
latter portion of the Little Ice Age, and MCEOF1 highlightsrpistently dry conditions in
the mid-late 18 century (Fig. 3). To assess the relative timing of thesegtnts; we can plot
the year corresponding to the minimum value between 165B-CE for each individual
proxy ensemble and the EOFs as a histogram (Fig. 10). Iniaddit providing a visual
assessment of when drought occurs at each site and rangeesfainty consistent with a
possible set of age models, the empirical density functadss provide a way to estimate
both the timing of droughts at each individual site as welttees potential synchronicity
between sites or in relation to independently known clinfiateings. For example, in spite
of the large age uncertainty of the Lake Naivasha record, amedetermine that there is a
91% chance that the major LIA drought at this lake occuattdr the end of the Maunder
Minimum (1715 CE), in agreement with the interpretation ef&¢huren et al (2000) that
a wet period prevailed during most of the Maunder Minimum &= only subsequently
followed by a severe drought. Furthermore, given that thdgility distributions for the
Maunder Minimum drought at Lakes Masoko and Malawi are axiprately normal, we can
apply a T test for contemporaneity following Long and Rigaet (1974) to determine that
there is an 81% likelihood that these droughts occurredeasdme time or, stated properly,
that there is insufficient evidence to reject a null hypothe§simultaneity.

The Varimax rotation of the two leadings EOFs has the effétigbtening the empirical
probability distributions for the droughts identified in EDand EOF2 (Fig. 10). The onset
of late Little Ice Age dry conditions in REOF1 falls between50 CE and 1800 CE, as
opposed to the more widely distributed drought in the uteatanode. Similarly, the drought
in REOF2 falls at 1690 CH: 15 years () as opposed to 1710 CE 50 years (&) in the
unrotated mode. To some extent the collapse of the drougtrttdition in the rotated EOFs
is a function of the mathematics of the pairwise rotatioalftas noted above 3, it separates
out records that have a wet period during the LIA from thos¢ &ne dry or drying, and these
records also happen to have their LIA minima fall in the seldaalf of the 18th century and
during the Maunder Minimum, respectively.

4.2 Methodological Considerations and Expansion

We have presented here a technique that addresses twoiglogertls when interpreting
paleoclimate dynamics from time-uncertain proxy data —elgnisolating robust coherence
between records in the presence of age model error and géwgloseful estimates of un-
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certainty. While our approach is designed to be both flexdblé transparent in application,
there are both advantages and disadvantages associatetievihethodology.

As described in Section 2.2.1, we assume superpositionesasnple in a manner that
does not permit age reversals, moving from the top of the segeence to the bottom. This
approach is admittedly simplistic compared to formal Bémeanalysis such as those used
in the programs OxCal (Bronk Ramsey, 1995, 2008) and BACOIdgiB~ and Christen,
2011) but it is relatively straightforward to code, caldaleand conceptualize. When uncer-
tain radiometric dates are distributed sparsely down-ooreapproach performs similarly
to a full Bayesian approach. Furthermore, comparison lervpeoxy data plotted on our
iterated time uncertainty with proxy data plotted with théblished age models shows gen-
erally good agreement (Fig. 2) suggesting that our empinethod approximates the age
modeling decisions made by the respective authors andtsesuteasonable uncertainty
bounds. There are some exceptions (see section 3), in wiegbublished models fall near
or outside the 90% confidence levels. Such differences quartiflly reflect decisions made
in the original publication to choose a calibrated calentde within the*C calibration dis-
tribution that has a relatively low probability, or to useage model fitting function (linear
regression, higher order polynomial or flexible spline fit)igh may unintentionally pass
through an unlikely outer bound of the date distributiorsdyRomial or spline functions are
commonly chosen to form age-depth models because of thematisa that changes in sed-
imentation rates are generally gradual and not instantenabthe depth/age constraint, as
would be implicit in simple linear interpolation (Telford al, 2004a); however, if not prop-
erly constrained such fits can introduce artificial maximd amnima or force the model to
pass through low-probability domains (or even outsidehefdepth-age constraints. Here,
we use a piecewise cubic hermite interpolating polynomiatfion that performs similarly
to linear interpolation in that it does not allow “overshgiobf the age model in between
age-depth tiepoints, but unlike linear interpolation doesforce the model to produce in-
stantaneous changes in sedimentation rate at each adetigyuiint. Our iterative method
also has a distinct advantage over single-curve age magdglithat it makes use of the
full probability distribution of each age-depth consttammther than a point estimate, which
is a more robust way of treating the highly non-Gaussianobon dates in particular
(Telford et al, 2004b; Michczynski, 2007). In addition, thee of the age model ensemble
mean or median will inherently smooth over abrupt changessthns provide an estimate
for average accumulation rates that is dependent on thetairtyg of the dating constraints
rather than the choice of depth-to-age fitting function anstmes difficult to constrain
prior assumptions about sedimentation rate.

On the other hand, the choice of imposing superpositiondmtanner of our method has
limitations: for sediment cores that have been sampledrgtfiree intervals for radiometric
dating, or when a low precision date is closely associateéth with a high precision date,
a random draw from the older tail of the age distribution ésrthe subsequent date toward
the older limit of its own distribution. The cumulative efteof this tendency can be that
iterations fall preferentially within the older ends of tlate uncertainty distributions. For
age modeling of densely-dated sequences, it may thereopedierable to employ a for-
mally Bayesian approach (e.g., OxCal; Bronk Ramsey, 19988 In practice, results from
OxCal or other Bayesian approaches could be easily impledénto our MCEOF frame-
work; the posterior age distributions generated within @x&itput could be simply input
into our iterative age-depth sequence. Indeed, the agi-degdeling within our method is
intentionally designed to be “modular” in the sense thatuker may employ any kind of
method according to the needs of each time series’ chrondiogur case, we employ three
different approaches to iterate age models for the Eastdirdata (all with the constraint
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of superposition) — [1] A random draw from the probabilitgidibution of calibrated“C
ages, [2] A random draw from a Gaussian distribution &#3Pb dates or other tiepoints),
and [3] an error methodology tailored for varve countingethat treats counting error as
independent at each depth interval but cumulative dowe-(see section 2.2.1).

A problem not unique to our application of empirical orthagbfunction analysis is the
interpretability of the spatiotemporal patterns with mspto meaningful physical modes
of climate variability (Richman, 1986; Dommenget and L&2i®02; Monahan et al, 2009).
While rotation of the EOFs does allow the orthogonality ¢aaiat to be relaxed (Mestas-
Nufiez, 2000), this is not a panacea since this operatidritsélf identify local modes even
when broad-scale same-sign loadings might be appropiatéffe, 1987). For example,
rotation clusters the loading patterns in the East AfricatadFig. 6) which could distort
regional-scale climatic meaning in these patterns. Furtbee, the rotated East African
EOFs (Fig. 7) have a similar time-evolution as the unrot&edrs (Fig. 3), so the advantage
of applying rotation to further separate meaningful patesf climatic evolution is not ob-
vious. However, applied to a larger set of proxies or a diff¢iclimate regime rotation could
provide useful for paleoclimate interpretation. Alteimatreduced space methods might be
preferable in some situations; for example, Distinct erogirorthogonal function analysis
(DEOF; Dommenget, 2007), Simplified EOFs (Jolliffe et alp2)) or Simplifying EOFs
(Hannachi et al, 2006). Our MCEOF procedure is intended tietxéble enough to accept
alternative decompositions appropriate to the data andlittnatic context.

Finally, it remains unclear how to use and interpret corieeal approaches to testing
for the ‘significance’ of the leading eigenmodes when thems area priori known to in-
clude a mixture of climate signal and noise. Here we have epetpthe amount of variance
explained by these modes with that expected given a varietylb hypotheses (section
2.2.2). In particular, we take advantage of our ensembléodetb assess which modes have
explained variances that exceed that of high order autessiye random series following
the Preisendorfer and Mobley (1988) Rule N approach. Yet @te that in the actual pa-
leoclimate data, the patterns of common variance reflectélei eigenvalues represent the
influence of real hydroclimate variability, noise reflegtinon-hydroclimatic influences on
the proxy, and temporal bias arising from the differenceveen age models and the ‘true’
depth-to-age relationship. Thus, the Rule N red noise @gbralone may not be a useful
test of ‘significance’. We also note that stratifying theiudual ensemble members accord-
ing to differences from the null model reveals that high canmariance modes can occur
for a number of different age alignments (results not shoWi® interpret this to mean that
rare age model alignments that occur in a small portion oétitemble can result in a large
amount of variance even though the likelihood of that pakiicalignment is small. The par-
titioning of variance when the signal is noisy, the signakd, and the data points relatively
few probably provides only a weak constraint on which age eh@most valid and which
modes are ‘significant’. Practically speaking, this meduas interpretation of the modes is
not simply a statistical exercise, but also a geological@dimdatological one.

5 Conclusions

We have described, tested, and applied a methodology felaj@ng a reduced set of time
series and their associated spatial patterns of large peateclimate variability with esti-

mates of their uncertainty using a combination of Monte €ade model resampling and
empirical orthogonal function analysis. This approachesiile enough to integrate a di-
verse set of techniques for resampling from the space ofiljessge models, can include
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depth sampling uncertainty, and may be applied across aatatbvarying proxy type, sam-
pling resolution, and age controls. Our approach also yieltsemble time series for each
individual record, which themselves can be used in a engbigmbabilistic framework to
make inferences about the timing or concurrence of speciéate detected in the paleo-
climate record. This method is intended to complement iexjsin many cases Bayesian
(e.g. Bronk Ramsey, 1995), techniques for developing agtage models from imprecisely
dated records.

When applied to a set of time-uncertain, decadal-resaldtike sediment proxy records
of past hydroclimate in East Africa, our approach suggésstthe first EOF is “recover-
able” given the age uncertainty and is therefore climdiidaterpretable. EOF1 describes
overall wetter conditions in the early Little Ice Age, a savhat drier Medieval Climate
Anomaly, and sustained decadal-scale drought conditiotieisecond half of the 18th cen-
tury. The loading pattern of this mode hints at an Indo-Paaifiluence, a known driver of
climate in the East African region. Generally speaking, m@thod provides estimates of
the common large-scale variability that can be identifiespite known uncertainties and
provides a framework for comparing both securely dated and tincertain paleoclimate
evidence over a large region. Our procedure to some extentfizes the caution implicitly
shown by investigators of time-uncertain records in gagigihich features of these records
are reliable enough to warrant climatic interpretatiord provides a manner with which to
identify features of records that are robust given variausees of proxy and chronological
uncertainty.

Acknowledgements We thank Dan Amrhein, Ed Cook, Julien Emile-Geay and Martmgley for useful
discussion, and two anonymous reviewers for their helgfatiback. JET acknowledges the UCAR Climate
and Global Change Postdoctoral Fellowship for supportnipte MATLAB code for the MCEOF procedure
is available from the authors.
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Table 1 A list of the paleoclimate proxy data used in our test of theEM@F method, including lake site
name, type of proxy, length of the record, average timevatesf the respective proxy data, types of chrono-
logical controls (dating type) and source publicationf&pC = year of collection.

Lake Proxy Oldest Average Dating Type Number References
Record AT of Dates
Challa Branched and Isoprenoidal 22971 33 Varves (for last 2 ka), N/A Verschuren et al (2009);
Index (BIT; run-off proxy) BCE \llfrified with 21%Ph and Wolff et al (2011)
C
Naivasha Lake-level reconstruction CE 884 3 14c, 210pp, YOC, his- 20 Verschuren et al (2000);
based on sediment stratig- torical marker horizons Verschuren (2001)
raphy, fossil diatoms and including Salvinia
midge assemblages molesta outbreaks and
Daphniaeggs
Victoria % Shallow Water Diatoms 1032 CE 5 14C and coretop age via 7 Stager et al (2005)
(Lake-level proxy) cross-core correlation
Edward % Mg/Ca in authigenic 552 CE 4 14C, coretop age via 21 Russell and Johnson
calcite (Lake-level proxy) cross-core correlation (2007)
Tanganyika Charcoal (Aridity proxy) 690 CE 10  !%C, 21%%p and coretop 12 Tierney et al (2010)
age via cross-core cor-
relation
Masoko Low-field magnetic sus- BCE 10 14C, cross-core correla- 7 Gibert et al (2002);
ceptibility (run-off proxy) 43307 tion, YOC, tephra Garcin et al (2006,
2007)
Malawi Terrigenous Mass Accu- 1270 CE 6 Varves, verified with N/A Johnson et al (2001);

mulation Rate (MAR; run-
off proxy)

219pp and tephra layers

Brown and Johnson
(2005); Johnson and
McCave (2008)
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