23 research outputs found

    A tire contact solution technique

    Get PDF
    An efficient method for calculating the contact boundary and interfacial pressure distribution was developed. This solution technique utilizes the discrete Fourier transform to establish an influence coefficient matrix for the portion of the pressurized tire surface that may be in the contact region. This matrix is used in a linear algebra algorithm to determine the contact boundary and the array of forces within the boundary that are necessary to hold the tire in equilibrium against a specified contact surface. The algorithm also determines the normal and tangential displacements of those points on the tire surface that are included in the influence coefficient matrix. Displacements within and outside the contact region are calculated. The solution technique is implemented with a finite-element tire model that is based on orthotropic, nonlinear shell of revolution elements which can respond to nonaxisymmetric loads. A sample contact solution is presented

    Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse

    Get PDF
    A terahertz half-cycle pulse was used to retrieve information stored as quantum phase in an NN-state Rydberg atom data register. The register was prepared as a wave packet with one state phase-reversed from the others (the "marked bit"). A half-cycle pulse then drove a significant portion of the electron probability into the flipped state via multimode interference.Comment: accepted by PR

    Excitation of weakly bound Rydberg electrons by half-cycle pulses

    Full text link
    The interaction of a weakly bound Rydberg electron with an electromagnetic half-cycle pulse (HCP) is described with the help of a multidimensional semiclassical treatment. This approach relates the quantum evolution of the electron to its underlying classical dynamics. The method is nonperturbative and is valid for arbitrary spatial and temporal shapes of the applied HCP. On the basis of this approach angle- and energy-resolved spectra resulting from the ionization of Rydberg atoms by HCPs are analyzed. The different types of spectra obtainable in the sudden-impact approximation are characterized in terms of the appearing semiclassical scattering phenomena. Typical modifications of the spectra originating from finite pulse effects are discussed.Comment: Submitted to Phys. Rev.

    Axisymmetric Banding of Annular Plates

    No full text

    Methods for Analyzing Nose Gear During Landing Using Structural Finite Element Analysis

    No full text
    The objective of this paper is to provide a modeling and analysis guide that can be used in determining the stress and displacement behaviors of an aircraft nose gear during landing. The paper outlines the modeling and analysis of the nose gear of an aircraft using finite element analysis. The nose gear was first modeled using computer-aided design software and then imported into finite element software. The external forces were determined analytically and the interactions between components were carefully modeled using contact analysis. The tire was modeled using the eye-bar theory. The results obtained in this work are consistent with the Federal Aviation Administration\u27s recommendations for physical testing. Copyright © 2011 by Luis Delgado
    corecore