1,407 research outputs found

    Polycyclic Aromatic Hydrocarbons with armchair edges and the 12.7 {\mu}m band

    Full text link
    In this Letter we report the results of density functional theory calculations on medium-sized neutral Polycyclic Aromatic Hydrocarbon (PAH) molecules with armchair edges. These PAH molecules possess strong C-H stretching and bending modes around 3 {\mu}m and in the fingerprint region (10-15 {\mu}m), and also strong ring deformation modes around 12.7 {\mu}m. Perusal of the entries in the NASA Ames PAHs Database shows that ring deformation modes of PAHs are common - although generally weak. We then propose that armchair PAHs with NC >65 are responsible for the 12.7 {\mu}m Aromatic Infrared Band in HII regions and discuss astrophysical implications in the context of the PAH life-cycle.Comment: Minor editin

    Mapping PAH sizes in NGC 7023 with SOFIA

    Get PDF
    NGC 7023 is a well-studied reflection nebula, which shows strong emission from polycyclic aromatic hydrocarbon (PAH) molecules in the form of aromatic infrared bands (AIBs). The spectral variations of the AIBs in this region are connected to the chemical evolution of the PAH molecules which, in turn, depends on the local physical conditions. We use the capabilities of SOFIA to observe a 3.2' x 3.4' region of NGC 7023 at wavelengths that we observe with high spatial resolution (2.7") at 3.3 and 11.2 um. We compare the SOFIA images with existing images of the PAH emission at 8.0 um (Spitzer), emission from evaporating very small grains (eVSG) extracted from Spitzer-IRS spectral cubes, the ERE (HST and CFHT), and H_2 (2.12 um). We create maps of the 11.2/3.3 um ratio to probe the morphology of the PAH size distribution and the 8.0/11.2 um ratio to probe the PAH ionization. We make use of an emission model and of vibrational spectra from the NASA Ames PAHdb to translate the 11.2/3.3 um ratio to PAH sizes. The 11.2/3.3 um map shows the smallest PAH concentrate on the PDR surface (H_2 and extended red emission) in the NW and South PDR. We estimated that PAHs in the NW PDR bear, on average, a number of carbon atoms (N_c) of ~70 in the PDR cavity and ~50 at the PDR surface. In the entire nebula, the results reveal a factor of 2 variation in the size of the PAH. We relate these size variations to several models for the evolution of the PAH families when they traverse from the molecular cloud to the PDR. The PAH size map enables us to follow the photochemical evolution of PAHs in NGC 7023. Small PAHs result from the photo-evaporation of VSGs as they reach the PDR surface. Inside the PDR cavity, the PAH abundance drops as the smallest PAH are broken down. The average PAH size increases in the cavity where only the largest species survive or are converted into C_60 by photochemical processing.Comment: accepted for publication in A&

    Nested shells reveal the rejuvenation of the Orion-Eridanus superbubble

    Get PDF
    The Orion-Eridanus superbubble is the prototypical superbubble due to its proximity and evolutionary state. Here, we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing to draw a new and more complete picture on the history and evolution of the Orion-Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble, and derive quantitative properties of the gas- and dust inside Barnard's Loop. We reveal that Barnard's Loop is a complete bubble structure which, together with the lambda Ori region and other smaller-scale bubbles, expands within the Orion-Eridanus superbubble. We argue that the Orion-Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, HII region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass-loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years.Comment: 20 pages, 6 figures, accepted for publication in Ap

    Evaluation of the Multiplane Method for Efficient Simulations of Reaction Networks

    Full text link
    Reaction networks in the bulk and on surfaces are widespread in physical, chemical and biological systems. In macroscopic systems, which include large populations of reactive species, stochastic fluctuations are negligible and the reaction rates can be evaluated using rate equations. However, many physical systems are partitioned into microscopic domains, where the number of molecules in each domain is small and fluctuations are strong. Under these conditions, the simulation of reaction networks requires stochastic methods such as direct integration of the master equation. However, direct integration of the master equation is infeasible for complex networks, because the number of equations proliferates as the number of reactive species increases. Recently, the multiplane method, which provides a dramatic reduction in the number of equations, was introduced [A. Lipshtat and O. Biham, Phys. Rev. Lett. 93, 170601 (2004)]. The reduction is achieved by breaking the network into a set of maximal fully connected sub-networks (maximal cliques). Lower-dimensional master equations are constructed for the marginal probability distributions associated with the cliques, with suitable couplings between them. In this paper we test the multiplane method and examine its applicability. We show that the method is accurate in the limit of small domains, where fluctuations are strong. It thus provides an efficient framework for the stochastic simulation of complex reaction networks with strong fluctuations, for which rate equations fail and direct integration of the master equation is infeasible. The method also applies in the case of large domains, where it converges to the rate equation results

    The Propagation and Survival of Interstellar Grains

    Get PDF
    In this paper we discuss the propagation of dust through the interstellar medium (ISM), and describe the destructive effects of stellar winds, jets, and supernova shock waves on interstellar dust. We review the probability that grains formed in stellar outflows or supernovae survive processing in and propagation through the ISM, and incorporate themselves relatively unprocessed into meteoritic bodies in the solar system. We show that very large (radii >= 5 micron) and very small grains (radii <= 100 Angstrom) with sizes similar to the pre-solar SiC and diamond grains extracted from meteorites, can survive the passage through 100\kms shock waves relatively unscathed. High velocity (>= 250 km/s) shocks destroy dust efficiently. However, a small (~10%) fraction of the stardust never encountered such fast shocks before incorporation into the solar system. All grains should therefore retain traces of their passage through interstellar shocks during their propagation through the ISM. The grain surfaces should show evidence of processing due to sputtering and pitting due to small grain cratering collisions on the micron-sized grains. This conclusion seems to be in conflict with the evidence from the large grains recovered from meteorites which seem to show little interstellar processing.Comment: 19 pages, 5 figures (.eps), LaTeX, to appear in "Astrophysical Implications of the Laboratory Study of Presolar Materials" AIP Conference Proceedings, 1997 T.J. Bernatowicz and E. Zinner (eds.

    Pore evolution in interstellar ice analogues: simulating the effects of temperature increase

    Get PDF
    Context. The level of porosity of interstellar ices - largely comprised of amorphous solid water (ASW) - contains clues on the trapping capacity of other volatile species and determines the surface accessibility that is needed for solid state reactions to take place. Aims. Our goal is to simulate the growth of amorphous water ice at low temperature (10 K) and to characterize the evolution of the porosity (and the specific surface area) as a function of temperature (from 10 to 120 K). Methods. Kinetic Monte Carlo simulations are used to mimic the formation and the thermal evolution of pores in amorphous water ice. We follow the accretion of gas-phase water molecules as well as their migration on surfaces with different grid sizes, both at the top growing layer and within the bulk. Results. We show that the porosity characteristics change substantially in water ice as the temperature increases. The total surface of the pores decreases strongly while the total volume decreases only slightly for higher temperatures. This will decrease the overall reaction efficiency, but in parallel, small pores connect and merge, allowing trapped molecules to meet and react within the pores network, providing a pathway to increase the reaction efficiency. We introduce pore coalescence as a new solid state process that may boost the solid state formation of new molecules in space and has not been considered so far.Comment: 9 pages, 8 figures Accepted for publication in A&

    Crystallinity versus mass-loss rate in Asymptotic Giant Branch stars

    Get PDF
    Infrared Space Observatory (ISO) observations have shown that O-rich Asymptotic Giant Branch (AGB) stars exhibit crystalline silicate features in their spectra only if their mass-loss rate is higher than a certain threshold value. Usually, this is interpreted as evidence that crystalline silicates are not present in the dust shells of low mass-loss rate objects. In this study, radiative transfer calculations have been performed to search for an alternative explanation to the lack of crystalline silicate features in the spectrum of low mass-loss rate AGB stars. It is shown that due to a temperature difference between amorphous and crystalline silicates it is possible to include up to 40% of crystalline silicate material in the circumstellar dust shell, without the spectra showing the characteristic spectral features. Since this implies that low mass-loss rate AGB stars might also form crystalline silicates and deposit them into the Interstellar Medium (ISM), the described observational selection effect may put the process of dust formation around AGB stars and the composition of the predominantly amorphous dust in the Interstellar Medium in a different light. Our model calculations result in a diagnostic tool to determine the crystallinity of an AGB star with a known mass-loss rate.Comment: accepted by A&A, 10 pages, 11 figure

    Variations of the Mid-IR Aromatic Features Inside and Among Galaxies

    Get PDF
    We present the results of a systematic study of mid-IR spectra of Galactic regions, Magellanic HII regions, and galaxies of various types (dwarf, spiral, starburst), observed by the satellites ISO and Spitzer. We study the relative variations of the 6.2, 7.7, 8.6 and 11.3 micron features inside spatially resolved objects (such as M82, M51, 30 Doradus, M17 and the Orion Bar), as well as among 90 integrated spectra of 50 objects. Our main results are that the 6.2, 7.7 and 8.6 micron bands are essentially tied together, while the ratios between these bands and the 11.3 micron band varies by one order of magnitude. This implies that the properties of the PAHs are remarkably universal throughout our sample, and that the relative variations of the band ratios are mainly controled by the fraction of ionized PAHs. In particular, we show that we can rule out both the modification of the PAH size distribution, and the mid-infrared extinction, as an explanation of these variations. Using a few well-studied Galactic regions (including the spectral image of the Orion Bar), we give an empirical relation between the I(6.2)/I(11.3) ratio and the ionization/recombination ratio G0/ne.Tgas^0.5, therefore providing a useful quantitative diagnostic tool of the physical conditions in the regions where the PAH emission originates. Finally, we discuss the physical interpretation of the I(6.2)/I(11.3) ratio, on galactic size scales.Comment: Accepted by the ApJ, 67 pages, 70 figure
    • …
    corecore