1,022 research outputs found

    The Metallicity and Reddening of Stars in the Inner Galactic Bulge

    Get PDF
    We present a preliminary analysis of K, J-K color magnitude diagrams (CMDs) for 7 different positions on or close to the minor axis of the Milky Way at Galactic latitudes between +0.1^\circ and -2.8^\circ. From the slopes of the (linear) giant branches in these CMDs we derive a dependence of on latitude for b between -0.8^\circ and -2.8^\circ of -0.085 \pm 0.033 dex/degree. When combined with the data from Tiede et al. we find for -0.8^\circ \leq b \leq -10.3^\circ the slope in is -0.064 \pm 0.012 dex/degree. An extrapolation to the Galactic Center predicts [Fe/H] = +0.034 \pm 0.053 dex. We also derive average values for the extinction in the K band (A_K) of between 2.15 and 0.27 for the inner bulge fields corresponding to average values of E(J-K) of between 3.46 and 0.44. There is a well defined linear relation between the average extinction for a field and the star-to-star scatter in the extinction for the stars within each field. This result suggests that the typical apparent angular scale size for an absorbing cloud is small compared with the field size (90\arcsec on a side). Finally, from an examination of the luminosity function of bright giants in each field we conclude that the young component of the stellar population observed near the Galactic center declines in density much more quickly than the overall bulge population and is undetectable beyond 1^\circ from the Galactic center.Comment: accepted for publication in Astron. Jour. Compressed file contains the text, 9 figures, and 6 tables prepared with AAS Latex macros v. 4.

    Development of a MEBT Design to replace current UNILAC Superlens

    Get PDF

    Development of a KONUS based High Energy Linac for the UNILAC

    Get PDF

    Novel parameters for evaluating the Spatial and Thematic accuracy of land cover maps.

    Get PDF
    Se proponen novedosas fĂłrmulas para evaluar la certeza de la cartografĂ­

    A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels.

    Get PDF
    Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A

    From Stars to Super-planets: the Low-Mass IMF in the Young Cluster IC348

    Full text link
    We investigate the low-mass population of the young cluster IC348 down to the deuterium-burning limit, a fiducial boundary between brown dwarf and planetary mass objects, using a new and innovative method for the spectral classification of late-type objects. Using photometric indices, constructed from HST/NICMOS narrow-band imaging, that measure the strength of the 1.9 micron water band, we determine the spectral type and reddening for every M-type star in the field, thereby separating cluster members from the interloper population. Due to the efficiency of our spectral classification technique, our study is complete from approx 0.7 Msun to 0.015 Msun. The mass function derived for the cluster in this interval, dN/dlogM \propto M^{0.5}, is similar to that obtained for the Pleiades, but appears significantly more abundant in brown dwarfs than the mass function for companions to nearby sun-like stars. This provides compelling observational evidence for different formation and evolutionary histories for substellar objects formed in isolation vs. as companions. Because our determination of the IMF is complete to very low masses, we can place interesting constraints on the role of physical processes such as fragmentation in the star and planet formation process and the fraction of dark matter in the Galactic halo that resides in substellar objects.Comment: 37 pages, 16 figs, 6 tables (Table 4 is a separate LaTeX file) Accepted for publication in Astrophysical Journal (Oct 1, 2000 issue
    • …
    corecore