45 research outputs found

    Whole-Genome Sequencing of a Single Proband Together with Linkage Analysis Identifies a Mendelian Disease Gene

    Get PDF
    Although more than 2,400 genes have been shown to contain variants that cause Mendelian disease, there are still several thousand such diseases yet to be molecularly defined. The ability of new whole-genome sequencing technologies to rapidly indentify most of the genetic variants in any given genome opens an exciting opportunity to identify these disease genes. Here we sequenced the whole genome of a single patient with the dominant Mendelian disease, metachondromatosis (OMIM 156250), and used partial linkage data from her small family to focus our search for the responsible variant. In the proband, we identified an 11 bp deletion in exon four of PTPN11, which alters frame, results in premature translation termination, and co-segregates with the phenotype. In a second metachondromatosis family, we confirmed our result by identifying a nonsense mutation in exon 4 of PTPN11 that also co-segregates with the phenotype. Sequencing PTPN11 exon 4 in 469 controls showed no such protein truncating variants, supporting the pathogenicity of these two mutations. This combination of a new technology and a classical genetic approach provides a powerful strategy to discover the genes responsible for unexplained Mendelian disorders

    Evolutionary Analyses of Entire Genomes Do Not Support the Association of mtDNA Mutations with Ras/MAPK Pathway Syndromes

    Get PDF
    BACKGROUND: There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). METHODS/PRINCIPAL FINDINGS: The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. CONCLUSIONS/SIGNIFICANCE: As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS

    Craniofacial and dental development in cardio‐facio‐cutaneous syndrome: the importance of Ras signaling homeostasis

    No full text
    Cardio-facio-cutaneous syndrome (CFC) is a RASopathy that is characterized by craniofacial, dermatologic, gastrointestinal, ocular, cardiac, and neurologic anomalies. CFC is caused by activating mutations in the Ras/mitogen-activated protein kinase (MAPK) signaling pathway that is downstream of receptor tyrosine kinase (RTK) signaling. RTK signaling is known to play a central role in craniofacial and dental development, but to date, no studies have systematically examined individuals with CFC to define key craniofacial and dental features. To fill this critical gap in our knowledge, we evaluated the craniofacial and dental phenotype of a large cohort (n = 32) of CFC individuals who attended the 2009 and 2011 CFC International Family Conferences. We quantified common craniofacial features in CFC which include macrocephaly, bitemporal narrowing, convex facial profile, and hypoplastic supraorbital ridges. In addition, there is a characteristic dental phenotype in CFC syndrome that includes malocclusion with open bite, posterior crossbite, and a high-arched palate. This thorough evaluation of the craniofacial and dental phenotype in CFC individuals provides a step forward in our understanding of the role of RTK/MAPK signaling in human craniofacial development and will aid clinicians who treat patients with CFC
    corecore