239 research outputs found

    On entropy production for controlled Markovian evolution

    Full text link
    We consider thermodynamic systems with finitely many degrees of freedom and subject to an external control action. We derive some basic results on the dependence of the relative entropy production rate on the controlling force. Applications to macromolecular cooling and to controlling the convergence to equilibrium rate are sketched. Analogous results are derived for closed and open n-level quantum systems.Comment: 19 page

    Protecting subspaces by acting on the outside

    Full text link
    Many quantum control tasks aim at manipulating the state of a quantum mechanical system within a finite subspace of states. However, couplings to the outside are often inevitable. Here we discuss strategies which keep the system in the controlled subspace by applying strong interactions onto the outside. This is done by drawing analogies to simple toy models and to the quantum Zeno effect. Special attention is paid to the constructive use of dissipation in the protection of subspaces.Comment: 16 pages, 10 figure

    Quantum Control of Two-Qubit Entanglement Dissipation

    Full text link
    We investigate quantum control of the dissipation of entanglement under environmental decoherence. We show by means of a simple two-qubit model that standard control methods - coherent or open-loop control - will not in general prevent entanglement loss. However, we propose a control method utilising a Wiseman-Milburn feedback/measurement control scheme which will effectively negate environmental entanglement dissipation.Comment: 11 pages,4 figures, minor correctio

    Cooling atoms into entangled states

    Full text link
    We discuss the possibility of preparing highly entangled states by simply cooling atoms into the ground state of an applied interaction Hamiltonian. As in laser sideband cooling, we take advantage of a relatively large detuning of the desired state, while all other qubit states experience resonant laser driving. Once spontaneous emission from excited atomic states prepares the system in its ground state, it remains there with a very high fidelity for a wide range of experimental parameters and all possible initial states. After presenting the general theory, we discuss concrete applications with one and two qubits.Comment: 16 pages, 6 figures, typos correcte

    Generation and propagation of entanglement in driven coupled-qubit systems

    Full text link
    In a bipartite system subject to decoherence from two separate reservoirs, the entanglement is typically destroyed faster than for single reservoirs. Surprisingly however, the existence of separate reservoirs can also have a beneficial entangling effect: if the qubits are coupled and driven externally by a classical field, the system ends up in a stationary state characterized by a finite degree of entanglement. This phenomenon occurs only in a certain region of the parameter space and the structure of the stationary state has a universal form which does not depend on the initial state or on the specific physical realization of the qubits. We show that the entanglement thus generated can be propagated within a quantum network using simple local unitary operations. We suggest the use of such systems as "batteries of entanglement" in quantum circuits.Comment: 14 pages, 7 figure

    Brachistochrone of Entanglement for Spin Chains

    Full text link
    We analytically investigate the role of entanglement in time-optimal state evolution as an appli- cation of the quantum brachistochrone, a general method for obtaining the optimal time-dependent Hamiltonian for reaching a target quantum state. As a model, we treat two qubits indirectly cou- pled through an intermediate qubit that is directly controllable, which represents a typical situation in quantum information processing. We find the time-optimal unitary evolution law and quantify residual entanglement by the two-tangle between the indirectly coupled qubits, for all possible sets of initial pure quantum states of a tripartite system. The integrals of the motion of the brachistochrone are determined by fixing the minimal time at which the residual entanglement is maximized. Entan- glement plays a role for W and GHZ initial quantum states, and for the bi-separable initial state in which the indirectly coupled qubits have a nonzero value of the 2-tangle.Comment: 9 pages, 4 figure

    Reverse quantum state engineering using electronic feedback loops

    Get PDF
    We propose an all-electronic technique to manipulate and control interacting quantum systems by unitary single-jump feedback conditioned on the outcome of a capacitively coupled electrometer and in particular a single-electron transistor. We provide a general scheme to stabilize pure states in the quantum system and employ an effective Hamiltonian method for the quantum master equation to elaborate on the nature of stabilizable states and the conditions under which state purification can be achieved. The state engineering within the quantum feedback scheme is shown to be linked with the solution of an inverse eigenvalue problem. Two applications of the feedback scheme are presented in detail: (i) stabilization of delocalized pure states in a single charge qubit and (ii) entanglement stabilization in two coupled charge qubits. In the latter example we demonstrate the stabilization of a maximally entangled Bell state for certain detector positions and local feedback operations.Comment: 23 pages, 6 figures, to be published by New Journal of Physics (2013

    Brain-Computer Interface for Clinical Purposes : Cognitive Assessment and Rehabilitation

    Get PDF
    Alongside the best-known applications of brain-computer interface (BCI) technology for restoring communication abilities and controlling external devices, we present the state of the art of BCI use for cognitive assessment and training purposes. We first describe some preliminary attempts to develop verbal-motor free BCI-based tests for evaluating specific or multiple cognitive domains in patients with Amyotrophic Lateral Sclerosis, disorders of consciousness, and other neurological diseases. Then we present the more heterogeneous and advanced field of BCI-based cognitive training, which has its roots in the context of neurofeedback therapy and addresses patients with neurological developmental disorders (autism spectrum disorder and attention-deficit/hyperactivity disorder), stroke patients, and elderly subjects. We discuss some advantages of BCI for both assessment and training purposes, the former concerning the possibility of longitudinally and reliably evaluating cognitive functions in patients with severe motor disabilities, the latter regarding the possibility of enhancing patients' motivation and engagement for improving neural plasticity. Finally, we discuss some present and future challenges in the BCI use for the described purposes

    A novel nonsense ATP7A pathogenic variant in a family exhibiting a variable occipital horn syndrome phenotype

    Get PDF
    We report on a family with occipital horn syndrome (OHS) diagnosed in the proband's late fifties. A novel ATP7A pathogenic variant (c.4222A > T, p.(Lys1408*)), representing the first nonsense variant and the second late truncation causing OHS rather than classic Menkes disease, was found to segregate in the family. The predicted maintenance of transmembrane domains is consistent with a residual protein activity, which may explain the mild clinical presentation
    • …
    corecore