8 research outputs found

    Evaluation of Ultem 1000, 1010, and 9085 for Radome Applications at 24.5 GHz

    Get PDF
    The UAS in the NAS project Flight Test 6 (FT6) campaign scheduled for FY19Q3 will evaluate the proficiency of a Honeywell DAPA-Lite Radar installed on a Tiger Shark unmanned vehicle to detect the presence of air traffic operating in its vicinity. A 3D printed radome will be manufactured for the front of the Tiger Shark to enclose the radar during FT6 operations. The DAPA-Lite radar operates in the 24.5 GHz frequency band. Material properties of 3D printer filaments are widely available for the mechanical and thermal properties, but limited knowledge exists on the electrical properties for radome applications and no data was found to correspond at the 24.5 Ghz frequency band. To minimize project risk associated with the radome performance, transmissivity and reflectivity measurements were conducted on two candidate 3D printed dielectric material filaments (Ultem 1010 Natural and Ultem 9085 Black) and two thicknesses of a solid laminate (Ultem 1000) material. The 3D printed Ultem coupons were tested shortly after being printed and again 8 months later to examine ageing effects of the open cell structure. This paper presents the transmissivity and reflectivity measurement results collected on the Ultem coupons and concludes the 3D printed 1010 Natural coupon is a suitable candidate filament for radome applications at 24.5 GHz. The design of the structures open cell matrix has a significant impact on the materials surface reflectivity

    Airborne Radar for sUAS Sense and Avoid

    Get PDF
    A primary challenge for the safe integration of small UAS operations into the National Airspace System (NAS) is traffic deconfliction, both from manned and unmanned aircraft. The UAS Traffic Management (UTM) project being conducted at the National Aeronautics and Space Administration (NASA) considers a layered approach to separation provision, ranging from segregation of operations through airspace volumes (geofences) to autonomous sense and avoid (SAA) technologies for higher risk, densely occupied airspace. Cooperative SAA systems, such as Automatic Dependent Surveillance-Broadcast (ADS-B) and/or vehicle-to-vehicle communication systems provide significant additional risk mitigation but they fail to adequately mitigate collision risks for non-cooperative (non-transponder equipped) airborne aircraft. The RAAVIN (Radar on Autonomous Aircraft to Verify ICAROUS Navigation) flight test being conducted by NASA and the Mid-Atlantic Aviation Partnership (MAAP) was designed to investigate the applicability and performance of a prototype, commercially available sUAS radar to detect and track non-cooperative airborne traffic, both manned and unmanned. The radar selected for this research was a Frequency Modulated Continuous Wave (FMCW) radar with 120 degree azimuth and 80 degree elevation field of view operating at 24.55GHz center frequency with a 200 MHz bandwidth. The radar transmits 2 watts of power thru a Metamaterial Electronically Scanning Array antenna in horizontal polarization. When the radar is transmitting, personnel must be at least 1 meter away from the active array to limit nonionizing radiation exposure. The radar physical dimensions are 18.7cm by 12.1cm by 4.1cm and it weighs less than 820 grams making it well suited for installation on small UASs. The onboard, SAA capability, known as ICAROUS, (Independent Configurable Architecture for Reliable Operations of Unmanned Systems), developed by NASA to support sUAS operations, will provide autonomous guidance using the traffic radar tracks from the onboard radar. The RAAVIN set of studies will be conducted in three phases. The first phase included outdoor, ground-based radar evaluations performed at the Virginia Techs Kentland Farm testing range in Blacksburg, VA. The test was designed to measure how well the radar could detect and track a small UAS flying in the radars field of view. The radar was used to monitor 5 test flights consisting of outbound, inbound and crossing routes at different ranges and altitudes. The UAS flown during the ground test was the Inspire 2, a quad copter weighing less than 4250 grams (10 pounds) at maximum payload. The radar was set up to scan and track targets over its full azimuthal field of view from 0 to 40 degrees in elevation. The radar was configured to eliminate tracks generated from any targets located beyond 2000 meters from the radar and moving at velocities under 1.45 meters per second. For subsequent phases of the study the radar will be integrated with a sUAS platform to evaluate its performance in flight for SAA applications ranging from sUAS to manned GA aircraft detections and tracking. Preliminary data analysis from the first outdoor ground tests showed the radar performed well at tracking the vehicle as it flew outbound and repeatedly maintained a track out to 1000 meters (maximum 1387 meters) until the vehicle slowed to a stop to reverse direction to fly inbound. As the Inspire flew inbound tracks from beyond 800 meters, a reacquisition time delay was consistently observed between when the Inspire exceeds a speed of 1.45 meters per second and when the radar indicated an inbound target was present and maintained its track. The time delay varied between 6 seconds to over 37 seconds for the inbound flights examined, and typically resulted in about a 200 meter closure distance before the Inspire track was maintained. The radar performed well at both acquiring and tracking the vehicle as it flew crossing routes out past 400 meters across the azimuthal field of view. The radar and ICAROUS software will be integrated and flown on a BFD-1400-SE8-E UAS during the next phase of the RAAVIN project. The main goal at the conclusion of this effort is to determine if this radar technology can reliably support minimum requirements for SAA applications of sUAS. In particular, the study will measure the range of vehicle detections, lateral and vertical angular errors, false and missed/late detections, and estimated distance at closest point of approach after an avoidance maneuver is executed. This last metric is directly impacted by sensor performance and indicates its suitability for the task

    Indoor Ground Testing of a Small UAS Sense and Avoid Airborne Doppler Radar

    Get PDF
    The National Aeronautics and Space Administrations Unmanned Aircraft System (UAS) Traffic Management (UTM) project is researching prototype technologies needed to ensure safe integration of UAS operations into the National Airspace System (NAS). Within the UTM Concept of Operations, UAS would be equipped with on-board Sense and Avoid (SAA) technology to continually monitor for manned and unmanned aircraft in its vicinity while operating beyond visual line of sight in uncontrolled airspace. To support this effort, a candidate commercially available 24.5 GHz Doppler radar was selected and evaluated to determine if the technology could reliably support minimum requirements for SAA applications of small UAS (sUAS). Indoor ground tests were conducted inside the NASA Langley Research Centers Experimental Test Range (ETR) from a stationary platform to evaluate the Doppler radar performance characteristics and gain operational proficiency before the radar was authorized to transmit outdoors. A high speed linear rail system was developed for the radar evaluation and was shown to be an effective method to generate Doppler radar targets of known radar cross section. The accuracy of the range and velocity reported by the radar was shown to be dependent on the Kalman filter state variance parameter settings. Antenna measurements were collected with the radar installed both on and off a sUAS to quantify the relative antenna gain, beam width and side lobe levels of the radars Metamaterial Electronically Scanning Array (MESA) antennas at boresight and extreme field of view pointing vectors. The relative antenna gain measured 2.6 dB lower at extreme field view angles compared to the boresight radiation pattern

    NASA ETR Quiet Zone Probe Study

    Get PDF
    The NASA Langley Research Centers Experimental Test Range is an indoor anechoic compact range far field test facility used to conduct antenna and electromagnetic radiation measurements. The Experimental Test Range was designed to simulate far field illumination in the facility test volume over a broad band of frequencies by collimating the RF energy from the 26 ft by 26 ft parabolic reflector. The quality of the antenna and radiation measurements are dependent on the uniformity of the far field plane wave generated by the compact range reflector. While this facility is going through several upgrades, this report describes an assessment of the far field plane wave conducted after resurfacing the primary reflector to improve performance and extend the range of frequencies for which this facility can operate. This assessment addresses far field uniformity probe data measured in the test volume across the facility operational frequency bands

    Open Circuit Resonant (SansEC) Sensor Technology for Lightning Mitigation and Damage Detection and Diagnosis for Composite Aircraft Applications

    Get PDF
    Traditional methods to protect composite aircraft from lightning strike damage rely on a conductive layer embedded on or within the surface of the aircraft composite skin. This method is effective at preventing major direct effect damage and minimizes indirect effects to aircraft systems from lightning strike attachment, but provides no additional benefit for the added parasitic weight from the conductive layer. When a known lightning strike occurs, the points of attachment and detachment on the aircraft surface are visually inspected and checked for damage by maintenance personnel to ensure continued safe flight operations. A new multi-functional lightning strike protection (LSP) method has been developed to provide aircraft lightning strike protection, damage detection and diagnosis for composite aircraft surfaces. The method incorporates a SansEC sensor array on the aircraft exterior surfaces forming a "Smart skin" surface for aircraft lightning zones certified to withstand strikes up to 100 kiloamperes peak current. SansEC sensors are open-circuit devices comprised of conductive trace spiral patterns sans (without) electrical connections. The SansEC sensor is an electromagnetic resonator having specific resonant parameters (frequency, amplitude, bandwidth & phase) which when electromagnetically coupled with a composite substrate will indicate the electrical impedance of the composite through a change in its resonant response. Any measureable shift in the resonant characteristics can be an indication of damage to the composite caused by a lightning strike or from other means. The SansEC sensor method is intended to diagnose damage for both in-situ health monitoring or ground inspections. In this paper, the theoretical mathematical framework is established for the use of open circuit sensors to perform damage detection and diagnosis on carbon fiber composites. Both computational and experimental analyses were conducted to validate this new method and system for aircraft composite damage detection and diagnosis. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. This paper also presents the shielding effectiveness along with the lightning direct effect test results from several different SansEC LSP and baseline protected and unprotected carbon fiber reinforced polymer (CFRP) test panels struck at 40 and 100 kiloamperes following a universal common practice test procedure to enable damage comparisons between SansEC LSP configurations and common practice copper mesh LSP approaches. The SansEC test panels were mounted in a LSP test bed during the lightning test. Electrical, mechanical and thermal parameters were measured during lightning attachment and are presented with post test nondestructive inspection comparisons. The paper provides correlational results between the SansEC sensors computed electric field distribution and the location of the lightning attachment on the sensor trace and visual observations showing the SansEC sensor's affinity for dispersing the lightning attachment

    Multi-Layer Wireless Sensor Construct for Use at Electrically-Conductive Material Surfaces

    Get PDF
    A multi-layer wireless sensor construct is provided. The construct includes a first dielectric layer adapted to be attached to a portion of a first surface of an electrically-conductive material. A layer of mu metal is provided on the first dielectric layer. A second dielectric layer is provided on the layer of mu metal. An electrical conductor is provided on the second dielectric layer wherein the second dielectric layer separates the electrical conductor from the layer of mu metal. The electrical conductor has first and second ends and is shaped to form an unconnected open-circuit that, in the presence of a time-varying magnetic field, resonates to generate a harmonic magnetic field response having a frequency, amplitude and bandwidth

    Damage Detection Response Characteristics of Open Circuit Resonant (SansEC) Sensors

    Get PDF
    The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, commercial entities, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into "smart" vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ. NASA Langley Research Center (LaRC) is developing a composite aircraft skin damage detection method and system based on open circuit SansEC (Sans Electric Connection) sensor technology. Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage structures, empennage structures, control surfaces and aircraft skins. SansEC sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect various types of damage in composite materials. The source cause of the in-service damage (lightning strike, impact damage, material fatigue, etc.) to the aircraft composite is not relevant. The sensor will detect damage independent of the cause. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. The unique electrical signatures (amplitude, frequency, bandwidth, and phase) are used for damage detection and diagnosis. An operational system and method would incorporate a SansEC sensor array on select areas of the aircraft exterior surfaces to form a "Smart skin" sensing surface. In this paper a new method and system for aircraft in-situ damage detection and diagnosis is presented. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. NASA LaRC has demonstrated with individual sensors that SansEC sensors can be effectively used for in-situ composite damage detection of delamination, voids, fractures, and rips. Keywords: Damage Detection, Composites, Integrated Vehicle Health Monitoring (IVHM), Aviation Safety, SansEC Sensor
    corecore