620 research outputs found

    Empirical Assessment of Breast Lesion Detection Capability Through an Innovative Microwave Imaging Device

    Get PDF
    This paper investigates the effect of conductivity weighting on microwave images obtained through a dedicated imaging device. MammoWave is a microwave imaging device for detection of breast lesions, operating using only two azimuthally rotating antennas without the use of matching liquids. For each breast, a set of conductivity weighted images are generated through modifying our algorithm based on Huygens principle, producing intensity maps representing the homogeneity of tissues’ dielectric properties. Subsequently, we introduce several imaging parameters (i.e. features) to quantify the non-homogenous behaviour of the image. Through empirical investigation on 103 breasts, we can verify that a selection of these features could allow distinction between breasts with radiological findings (WF), i.e. with benign or malign lesions, and breasts with no radiological findings (NF). Statistical significance was set at p<0.05.We obtained single features Area Under the receiver operating characteristic Curves (AUCs) spanning from 0.65 to 0.68. Significantly, we achieve AUCs of up to 0.77 when considering dense breasts only, which tend to cause detection limitations in mammography exams

    A Microwave Imaging Procedure for Lung Lesion Detection: Preliminary Results on Multilayer Phantoms

    Get PDF
    In this work, a feasibility study for lung lesion detection through microwave imaging based on Huygens’ principle (HP) has been performed using multilayer oval shaped phantoms mimicking human torso having a cylindrically shaped inclusion simulating lung lesion. First, validation of the proposed imaging method has been performed through phantom experiments using a dedicated realistic human torso model inside an anechoic chamber, employing a frequency range of 1–5 GHz. Subsequently, the miniaturized torso phantom validation (using both single and double inclusion scenarios) has been accomplished using a microwave imaging (MWI) device, which operates in free space using two antennas in multi-bistatic configuration. The identification of the target’s presence in the lung layer has been achieved on the obtained images after applying both of the following artifact removal procedures: (i) the “rotation subtraction” method using two adjacent transmitting antenna positions, and (ii) the “ideal” artifact removal procedure utilizing the difference between received signals from unhealthy and healthy scenarios. In addition, a quantitative analysis of the obtained images was executed based on the definition of signal to clutter ratio (SCR). The obtained results verify that HP can be utilized successfully to discover the presence and location of the inclusion in the lung-mimicking phantom, achieving an SCR of 9.88 dB

    Huygens principle based UWB microwave imaging method for skin cancer detection

    Get PDF
    In recent years, Ultra Wideband (UWB) technology has emerged as a promising alternative for use in a wide range of applications. One of the potential applications of UWB is in healthcare and imaging, motivated by its non-ionizing signals, low cost, low complexity, and its ability to penetrate through mediums. Moreover, the large bandwidth covered by UWB signals permits the very high resolution required in imaging experiments. In this paper, a recently introduced UWB microwave imaging technique based on the Huygens principle (HP), has been applied to multilayered skin model with an inclusion representing a tumor. The methodology of HP permits the capture of contrast such that different material properties within the region of interest can be discriminated in the final image, and its simplicity removes the need to solve inverse problems when forward propagating the waves. Therefore the procedure can identify and localize significant scatterers inside a multilayered volume. Validation of the technique through simulations on multilayered cylindrical model of the skin with inclusion representing the tumor has been performed

    Free space operating microwave imaging device for bone lesion detection: a phantom investigation

    Get PDF
    In this letter, a phantom validation of a low complexity microwave imaging device operating in free space in the 1-6.5 GHz frequency band is presented. The device, initially constructed for breast cancer detection, measures the scattered signals in a multi-bistatic fashion and employs an imaging procedure based on Huygens principle. Detection has been achieved in both bone fracture lesion and bone marrow lesion scenarios using the superimposition of five doublet transmitting positions, after applying the rotation subtraction artefact removal method. A resolution of 5 mm and a signal to clutter ratio (3.35 in linear scale) are achieved confirming the advantage of employing multiple transmitting positions on increased detection capability

    Joint inversion of teleseismic and GOCE gravity data: application to the Himalayas

    Get PDF
    Our knowledge and understanding of the 3-D lithospheric structure of the Himalayas and the Tibetan Plateau is still challenging although numerous geophysical studies have been performed in the region. The GOCE satellite mission has the ambitious goal of mapping Earth's gravity field with unprecedented precision (i.e. an accuracy of 1-2 mGal for a spatial resolution of 100 km) to observe the lithosphere and upper-mantle structure. Consequently, it gives new insights in the lithospheric structure beneath the Himalayas and the Tibetan Plateau. Indeed, the GOCE gravity data now allow us to develop a new strategy for joint gravimetry-seismology inversion. Combined with teleseismic data over a large region in a joint inversion scheme, they will lead to lithospheric velocity-density models constrained in two complementary ways. We apply this joint inversion scheme to the Hi-CLIMB (Himalayan-Tibetan Continental Lithosphere during Mountain Building) seismological network which was deployed in South Tibet and the Himalayas for a 3-yr period. The large size of the network, the high quality of the seismological data and the new GOCE gravity data set allow us to image the entire lithosphere of this active area in an innovative way. We image 3-D low velocity and density structures in the middle crust that fit the location of discontinuous low S-velocity zones revealed by receiver functions in previous geophysical studies. In the deeper parts of our velocity model we image a positive anomaly interpreted to be the heterogenous Indian lithosphere vertically descending beneath the centre of the Tibetan Platea

    UWB Microwave Imaging for Inclusions Detection: Methodology for Comparing Artefact Removal Algorithms

    Get PDF
    An investigation is presented on Artefact Removal Methods for Ultra-Wideband (UWB) Microwave Imaging. Simulations have been done representing UWB signals transmitted onto a cylindrical head-mimicking phantom containing an inclusion having dielectric properties imitating an haemorrhagic stroke. The ideal image is constructed by applying a Huygens’ Principle based imaging algorithm to the difference between the electric field outside the cylinder with an inclusion and the electric field outside the same cylinder with no inclusion. Eight different artefact removal methods are then applied, with the inclusion positioned at \u1d70b and −\u1d70b/4 radians, respectively. The ideal image is then used as a reference image to compare the artefact removal methods employing a novel Image Quality Index, calculated using a weighted combination of image quality metrics. The Summed Symmetric Differential method performed very well in our simulations

    Invecchiamento a temperatura ambiente di leghe Pb-Bi

    Get PDF
    Misure di variazione delle dimensioni lineari hanno dimostrato che le leghe Pb-Bi di composizione rientrante nel campo di esistenza bifasico ? + ?, raffreddate rapidamente da liquido, si dilatano nel corso del successivo invecchiamento a temperatura ambiente. L’espansione è risultata massima per la lega Pb55.5Bi di composizione eutettica, e decrescente con la quantità di lega che solidifica da liquido di composizione eutettica. Per invecchiamento, la microdurezza dapprima aumenta, presumibilmente per la precipitazione da fase ? di particelle indurenti di fase ?, e successivamente diminuisce gradualmente per effetto di un riassetto strutturale della lega a cui contribuiscono un ingrossamento del grano e, probabilmente, un rilassamento di tensioni meccaniche. Il meccanismo alla base della dilatazione nel tempo risulta complesso e non ancora chiarito in maniera conclusiva. L’ipotesi di lavoro più promettente si basa su un rilassamento delle tensioni meccaniche indotte nelle leghe dal raffreddamento rapido, particolarmente nella parte di lega che si è solidificata con morfologia eutettica
    corecore