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Abstract. An investigation is presented on Artefact Removal Methods for Ultra-

Wideband (UWB) Microwave Imaging. Simulations have been done represent-

ing UWB signals transmitted onto a cylindrical head-mimicking phantom con-

taining an inclusion having dielectric properties imitating an haemorrhagic 

stroke. The ideal image is constructed by applying a Huygens’ Principle based 

imaging algorithm to the difference between the electric field outside the cylinder 

with an inclusion and the electric field outside the same cylinder with no inclu-

sion. Eight different artefact removal methods are then applied, with the inclusion 

positioned at 𝜋 and −
𝜋

4
 radians, respectively. The ideal image is then used as a 

reference image to compare the artefact removal methods employing a novel Im-

age Quality Index, calculated using a weighted combination of image quality 

metrics. The Summed Symmetric Differential method performed very well in our 

simulations.  

Keywords: UWB Microwave Imaging, Image Quality Metric, Artefact Re-

moval. 

1 Introduction 

In recent years, there has been considerable interest into research in the field of medical 

imaging. Current imaging techniques are advanced and can produce images of high 

clarity within a variety of tissue mediums. Medical professionals can draw on a range 

of technologies to assist with diagnosis depending on the suspected inclusion to be de-

tected or the body part being imaged. Each technology has its own advantages and dis-

advantages. There are several techniques currently used for diagnosis purposes. Ultra-

sound scanners are cost-effective and successful in the medical diagnosis of areas of 

high contrast in soft tissues, hence their use in prenatal imaging and detection of various 

cancers. However, ultrasound is not a reliable technique for imaging air spaces, hard 

tissue such as bone/skull and providing definition in similar contrasting tissues. Com-

puted Tomography (CT) is very good at imaging hard tissues but requires a substantial 
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dose of ionising radiation. Magnetic Resonance Imaging (MRI) does not expose the 

patient to ionising radiation but does require them to stay still inside a claustrophobic 

space for a long time (up to hours). MRI and CT Scan devices are also expensive and 

not portable (owing to the pertinent dimensions of the devices), nor are they usable at 

rural medical centres, or carried by First Response Services (FRS) which are seen as 

essential for saving a person experiencing stroke. There is therefore an opportunity for 

research into a non-ionising, non-invasive, portable and cost-effective alternative.  

 Ultra-Wideband (UWB) technology has already proved successful in a number of 

areas related to health monitoring. The non-invasive nature of the signals and the suc-

cess at detecting changes quickly in the wireless medium has proven effective in health 

monitoring through movement detection [1]. Recent research has also shown the suc-

cessful detection of lesions which have different dielectric properties to the surrounding 

medium using UWB Microwave imaging [2]. This holds the potential for detections of 

cancer and stroke [3-5].  

Current UWB microwave imaging methods rely on algorithms to process the electric 

field measured at various points around the perimeter of an object. With all the algo-

rithms used there is the risk of inaccurate results due to reflections of the transmitting 

signal and unwanted reflections of signals from the surrounding tissues. These un-

wanted signals are known as ‘artefacts’ [6]. For the successful application of any im-

aging apparatus, a reliable artefact-removal algorithm is necessary.  

This study will explore a methodology for analysing and comparing a variety of 

methods for removing artefacts, using several imaging and signal processing metrics to 

provide a weighted Image Quality Index.  

2 Theoretical Framework 

Previous study focussing on breast cancer imaging [7] has identified that microwaves 

respond differently if they hit tissues which have different dielectric properties. By us-

ing UWB across microwave frequencies, it is possible to produce images with enough 

resolution to show inclusions. The same principle has been used to determine the con-

trast between blood and brain matter to identify stroke in head-mimicking phantoms 

[8].  

This study uses a technique explained in [9] which uses Huygens’ Principle (HP) to 

forward propagate the waves [10]. This avoids having to solve complex inverse prob-

lems. A simulated waveform is constructed using the principles laid out by Parrikar et 

al [11], which is transmitted from a line source external to the cylinder and received at 

a point on the radius, external or at the edge of the cylinder. The electric field 𝐸 can be 

calculated by summing the known Electric Field 𝐸𝑘𝑛𝑜𝑤𝑛 at NPT points 𝑛𝑝 on the pe-

rimeter using equation (1). HP indicates the Huygens’ Principle method used and 𝐺 re-

fers to the use of Green’s function. 

                          𝐸𝐻𝑃(𝑟, 𝜙; 𝜃; 𝑡𝑥𝑚; 𝑓) = ∆𝑠 ∑ 𝐸𝑛𝑝,𝑡𝑥𝑚
𝑘𝑛𝑜𝑤𝑛𝐺(𝑘1|𝑟𝑛𝑝 − 𝑟 |)

𝑁𝑃𝑇
𝑛𝑝=1   (1) 
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where (𝑟, 𝜙, 𝜃) ≡ 𝑟 is the observation point, 𝑘1 represents the wave number of the me-

dia constituting the cylinder, ∆𝑠 is the spatial sampling, and 𝑡𝑥𝑚 is the transmitting line 

source operating at frequency 𝑓. 

 An image is obtained by summing the solutions and mapping the intensity values. 

With 𝑁𝑓 frequencies 𝑓𝑖, the intensity of the final image 𝐼 can be obtained using equation 

(2). 

                               𝐼(𝑟, 𝜙, 𝜃; 𝑡𝑥𝑚) =
1

𝐵
∑ ∆𝑓|𝐸𝐻𝑃(𝑟, 𝜃, 𝜙; 𝑡𝑥𝑚; 𝑓)|2𝑁𝑓

𝑖=1
  (2) 

where ∆𝑓 and 𝐵 are the frequency sampling and Bandwidth, respectively. 

By subtracting, before applying equation (1), the electric field with no inclusion from 

the electric field with an inclusion to get the difference in electric fields 𝐸𝑑𝑖𝑓𝑓: 

                           𝐸𝑛𝑝,𝑡𝑥m

𝑑𝑖𝑓𝑓
=  𝐸𝑛𝑝,𝑡𝑥m

𝑘𝑛𝑜𝑤𝑛(𝑊𝑖𝑡ℎ 𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛)
− 𝐸𝑛𝑝,𝑡𝑥m

𝑘𝑛𝑜𝑤𝑛(𝑁𝑜 𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛)
  (3) 

the image obtained through equation (2) will show the inclusion. 

For the purposes of real scenario medical imaging, equation (3) cannot be used. In 

[6], it has been shown that this problem can be solved by producing a matrix of average 

values of the electric field obtained when the inclusion is present. Measurements are 

taken from multiple transmission sources and a mean value generated, which is sub-

tracted from the single transmitter data. This is explained mathematically in equation 

(4). 

𝐸𝐻𝑃(𝑟, 𝜙, 𝜃; 𝑡𝑥𝑚; 𝑓) = ∆𝑠 ∑ (𝐸𝑛𝑝,𝑡𝑥𝑚
𝑘𝑛𝑜𝑤𝑛 − avg𝑀{𝐸𝑛𝑝,𝑡𝑥𝑚

𝑘𝑛𝑜𝑤𝑛})
𝑁𝑃𝑇
𝑛𝑝=1  ×  G(𝑘1|𝑟𝑛𝑝 − 𝑟 |)  (4) 

The Average subtraction method represents just one method of obtaining an image 

of the inclusion. Several methods have been proposed which replace the average matrix 

with an alternative, such as the measurements from a neighbouring transmitter in the 

case of Rotation Subtraction [6,12], or by using a differential method of obtaining the 

resulting image, as is the case in [2,13-14]. Variations on these techniques will be sim-

ulated and compared in this study.  

3 Methodology 

3.1 Ideal Image Construction 

For the simulations, an external cylinder was simulated with radius 7 cm, relative die-

lectric constant 𝜖𝑟 = 10 and conductivity 𝜎 = 0.2 S/m. An internal cylindrical inclu-

sion was constructed with radius 0.5 cm, relative dielectric constant 𝜖𝑟 = 60, conduc-

tivity 𝜎 = 2 S/m and located 2 cm from the centre of the external cylinder with an ec-

centricity angle of −
𝜋

4
 radians. A simulation was run to construct the electric field at 

the perimeter of the external cylinder. This field was simulated using MATLAB and 

generated a value for the electric field at 80 points around the circumference for 1101 

discrete frequencies between 1 and 6.5GHz. The normalised microwave image of such 

cylinder with an inclusion can be seen in Fig. 1 (a). 𝑥 and 𝑦 values are in metres. 
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As can be seen in Fig. 1 (a), the electric field displays the reflection of the transmitter 

signal on the right of the cylinder. The transmitting signal has been set as a line source 

external to the cylinder at 𝑥 = −0.2, 𝑦 = 0. No evidence of the inclusion can be seen 

in this image. This is because the reflected transmitter signal is greater by a significant 

order of magnitude than the reflections from the inclusion.  

Fig 1(b) shows instead the image of the cylinder without the inclusion. Fig. 1 (a) 

looks very similar to Fig. 1 (b). To detect the inclusion, equation (3) should be used 

before performing imaging: such an image is given in Fig. 1 (c) and is used as an ‘Ideal 

Image’ for reference and comparisons. 

This process is repeated with an inclusion at an eccentricity angle of 𝜋 radians and 

the images used as reference images for comparing subsequent experiments using dif-

ferent pre-processing algorithms.  

 

     (a)           (b)           (c) 

Fig. 1. (a) Image of cylinder with an inclusion, and (b) without inclusion. (c) Ideal image (con-

structed after employing equation (3)).  

3.2 Artefact Removal Methods 

This study involves a comparison of various artefact removal algorithms operating in 

the frequency domain.  

Average Subtraction (AS). The average subtraction method works by taking the re-

sults from multi-transmitting sources (3 in this case) positioned slightly apart from each 

other (4.5° in this case) on the perimeter of the cylinder, with the first transmitter 𝑥1 

positioned at 𝑥 = −0.07, 𝑦 = 0. When tabulating the (known) Electric Field at 𝑛𝑝 

points on the perimeter, the data from transmission point 𝑥1 are placed into matrix 𝐴1 

which has dimensions made up by the number of frequencies  × number of observation 

points. For this series of experiments, 1101 discrete frequencies 𝑓 are used at 80 obser-

vation points, here denoted with 𝜙, giving matrix 𝐴1 in equation (5). 

                                                𝐴1 = [
𝑓1𝜙1 ⋯ 𝑓1𝜙80

⋮ ⋱ ⋮
𝑓1101𝜙1 ⋯ 𝑓1101𝜙80

] (5) 

The results from transmission points 𝑥2 and 𝑥3 are placed into matrices 𝐴2 and 𝐴3 re-

spectively in a similar fashion. Next, the mean of each point is calculated, i.e. 𝐴𝑎𝑣𝑔. 
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The resulting average matrix 𝐴𝑎𝑣𝑔  is then subtracted from the matrix of the first 

transmitter 𝐴1before performing imaging: 

                                                                   𝐸𝐴𝑆 = 𝐴1 − 𝐴𝑎𝑣𝑔 (6) 

Rotation Subtraction (RS). The simulation is set up to replicate a signal from 2 trans-

mitters, placed 4.5° apart on the perimeter of the cylinder. The receivers, frequencies 

and other input parameters remain the same as for the previous experiments. The image 

is then constructed using matrix 𝐸𝑅𝑆, given as the following: 

                                                                   𝐸𝑅𝑆 = 𝐴1 − 𝐴2 (7) 

where 𝐴1 and 𝐴2 are the results matrix from transmitter 1 and 2, respectively. 

Differential Neighbouring Receiver Type (DNR).  This method is adapted from 

Klemm’s Differential method [2]. Instead of using the raw results to build a matrix 

from, the input matrix is instead built using the difference in value between neighbour-

ing receivers. The input matrix S is thus built using the following calculation. 

                                     𝑆(𝑓, 𝜙; 𝑛) = 𝐴(𝑓, 𝜙: 𝑛) − 𝐴(𝑓, 𝜙 − 1; 𝑛) (8) 

for 𝜙 = 1 to
𝑁𝑎

2
  with  𝜙 − 1 = Na for 𝜙 = 1 

                                     𝑆(𝑓, 𝜙; 𝑛) = 𝐴(𝑓, 𝜙, 𝑛) − 𝐴(𝑓, 𝜙 + 1; 𝑛) (9) 

for 𝜙 =
𝑁𝑎

2
+ 1 to 𝑁𝑎  with  𝜙 + 1 = 1 for 𝜙 = 𝑁𝑎 

where 𝑁𝑎 is the number of receiving antennas, 𝑛 is the transmitter index and 𝐴 is the 

original results matrix. This results in a Differential (Neighbouring Receiver Type) ma-

trix 𝑆. To such a matrix is then applied the Average Subtraction or Rotation Subtraction 

methods. 

Differential Symmetric Receiver Type (DSR). By exploiting the (eventual) object 

symmetry, it may also be possible to construct a differential matrix using the difference 

between the receivers placed symmetrically opposite. This is adapted from a method 

used by Mustafa et al. in [11]. The differential matrix S is built by subtracting each 

receiver value from its symmetrically opposite receiver as in equation (10). 

 

                                   𝑆(𝑓, 𝜙; 𝑛) = 𝐴(𝑓, 𝜙; 𝑛) − 𝐴(𝑓, 𝑁𝑎 + 2 − 𝜙; 𝑛) (10) 

for 𝜙 = 1 to 𝑁𝑎  with 𝑁𝑎 + 1 =
𝑁𝑎

2
+ 1  for  𝜙 = 1  and 

𝑁𝑎

2
+ 1 = 1  for  𝜙 =

𝑁𝑎

2
+ 1. 
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This results in a Differential (Symmetric Receiver Type) matrix 𝑆. To such a matrix 

is then applied the Average Subtraction or Rotation Subtraction methods. 

Summed Symmetric Differential (SSD). The Symmetric Differential method above 

relies on the natural symmetry of some objects, such as the brain, across the left and 

right halves. However, there is a risk with the symmetric method of mirrored artefacts 

appearing in the images. The ellipsoid shape of the skull and brain have a distinct left-

right line of symmetry. The front-back sections of the brain also contain similar densi-

ties of tissue. Whilst not completely symmetrical, the similarity in shape and density 

could be utilised to provide an artefact removal method by summing a differential ma-

trix formed from the left-right differential and a second matrix formed from a front-

back differential. This should provide a more intense peak at the area of inclusion and 

mirrored artefacts should have a reduced intensity. As before, a differential matrix 𝑆 is 

constructed as in equation (10). A second matrix R is constructed across the front-back 

receivers as follows. 

                               𝑅(𝑓, 𝜙; 𝑛) = 𝐴(𝑓, 𝜙; 𝑛) − 𝐴 (𝑓,
𝑁𝑎

2
+ 2 − 𝜙; 𝑛) (11) 

for   𝜙 = 1   to  
𝑁𝑎

2
+ 1   

with  
𝑁𝑎

2
+ 2 − 𝜙 =

3𝑁𝑎

4
+ 1 for  𝜙 =

𝑁𝑎

4
+ 1 

 

                            𝑅(𝑓, 𝜙; 𝑛) = 𝐴(𝑓, 𝜙; 𝑛) − 𝐴 (𝑓,
3𝑁𝑎

2
+ 2 − 𝜙; 𝑛) (12) 

for  𝜙 =
Na

2
+ 2   to   𝑁𝑎     

with   
3𝑁𝑎

2
+ 2 − 𝜙 =

𝑁𝑎

4
+ 1   for 𝜙 =

3𝑁𝑎

4
+ 1 

where 𝑁𝑎 is the number of receiving antennas, 𝑛 is the transmitter index and 𝐴 is the 

original results matrix. The combined matrix 𝐶 is then constructed by summing matri-

ces 𝑆 and 𝑅. 

                                                𝐶(𝑖, 𝑗; 𝑛) = 𝑆(𝑖, 𝑗; 𝑛) + 𝑅(𝑖, 𝑗; 𝑛) (13) 

This results in a Differential (Summed Symmetric Receiver Type) matrix. To such a 

matrix is then applied the Average Subtraction or Rotation Subtraction methods. 

 

3.3 Comparison Methods 

To compare the proposed artefact removal methods, it is necessary to construct a quan-

tifiable measurement system that can be used to compare images. It is often difficult to 

construct a useful quantifiable number to measure an image. Whilst humans are good 

at recognising patterns and contrasts in an image, a machine must be taught each 
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process, and this uses considerable computing power. For this experiment, basic com-

parison metrics have been calculated to compare the results. These are explained in 

greater detail below. Some of the below metrics rely on a reference image. For the 

purposes of this experiment, an ‘Ideal Image’ has been used as shown above.  

 

Error Image. An Error image 𝑀𝐸𝑟𝑟  is constructed by subtracting the ideal image 

𝑋𝐼𝑑𝑒𝑎𝑙 , from the image to be tested 𝑌𝑇𝑒𝑠𝑡 . 

                                                          𝑀𝐸𝑟𝑟 =  𝑌𝑡𝑒𝑠𝑡 − 𝑋𝐼𝑑𝑒𝑎𝑙  (14) 

Mean Square Error (MSE). The mean square error is the mean of all the squared 

values of the errors in the error matrix. Squaring the values means that any negative 

values become positive, so the absolute value is important. The average gives a single 

value which is an indication of the error across the whole matrix. 

                                                                MSE =
1

𝑁
∑ 𝑀𝐸𝑟𝑟 𝑖

2𝑁
𝑖=1  (15) 

 

where 𝑁 is the number of elements in the Error matrix 𝑀𝐸𝑟𝑟. The mean square error 

can be calculated using MATLAB’s imaging toolbox and the command immse [15]. 

Polyshape Construction. To evaluate the shape of the inclusion, we set 0.75 as a 

threshold on the normalised image, assigning every value above 0.75 to 1, and all others 

to 0. The resulting shape can then be obtained using MATLAB’s polyboundary and 

polyshape functions [15]. 

Area Difference (ArD). This metric is related to the comparison between the size of 

the target area for an ‘Ideal’ image and the size of the target area in the test image.  

Centroid Difference (CD). To test the accuracy of the image at locating an inclusion, 

the above Polyshape method was combined with MATLAB’s centroid function. 

Comparison of accuracy can be made by assessing the Euclidean difference between 

the centroid of an ideal image polyshape and the test image. This will assess how accu-

rate the location of the inclusion in the test image is. This is done using the MATLAB 

pdist function [15].  

Signal-to-Noise Ratio (SNR).  The Signal-to-Noise Ratio (SNR) is a useful metric in 

determining how clear any detected inclusion is by providing an assessment of the ratio 

between the background noise and the desired signal. To calculate the Signal-to-Noise 

Ratio (SNR) in dB, the above threshold is used to calculate the Polyshape to determine 

the target and background areas. SNR calculations are performed based on this result. 

This method is described in [12] and can be calculated using equation (16). 
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                                                  SNR = 10 log10 (
𝑄𝑡−𝑄𝑏

𝐷𝑏
)  dB (16) 

where 𝑄𝑡 and 𝑄𝑏  are the mean values of the detected target and background regions, 

respectively, and 𝐷𝑏  is the standard deviation of the background. 

Structural Similarity Index Metric (SSIM). The SSIM is an image quality metric 

which gives a value between 0 and 1 which indicates the similarity between two images 

(with 1 meaning the images are identical) [16]. This is calculated using the following 

equation. 

                                               SSIM =
(2×𝑥̅×𝑦̅+𝐶1)(2×𝜎𝑥𝑦+𝐶2)

(𝜎𝑥
2+𝜎𝑦

2+𝐶2)(𝑥̅2+𝑦̅2+𝐶1)
 (17) 

where 𝑥 is the reference image, 𝑦 is the test image, 𝑥̅ and 𝑦̅ represent the corresponding 

mean, 𝜎𝑥 and 𝜎𝑦 represent the corresponding variance, 𝜎𝑥𝑦 is the covariance of the ref-

erence and test image and 𝐶1 and 𝐶2 are small constants. MATLAB can calculate the 

SSIM based on two input images using the ssim function [15]. This will output both 

a value and a monochrome mapping which is a useful visual assessment of the quality 

of the image. An example is shown in Fig. 2(e). 

Average Difference (AvD). The average difference is a measure of the mean difference 

in value between the Ideal Image and the test image. It is calculated by summing the 

elements of the Error Matrix and dividing by the number of elements. 

Image Quality Index (IQI). The above metrics provide several ways of quantifying 

the precision, accuracy, and quality of the images to be constructed. Whilst these met-

rics are useful, to aid in comparing the methods an overall quality index will be calcu-

lated. This will be constructed by giving each of the metrics a score between 1 and 0 

(with 1 being a perfect image or match with the Ideal image). For many of these values, 

as they are already being based on normalised results which will be between 0 and 1, it 

is relatively simple to produce an appropriate score. For SNR, instead a comparison is 

made with the Ideal Image. The value will approach 1 as it approaches the SNR value 

of the Ideal image. The full metric Indexes 𝐼 are shown in equations (18-23) with 𝑅 

representing the test result value. 

                                                        𝐼𝑀𝑆𝐸 = 1 − MSE𝑅 (18) 

                                                         𝐼𝑆𝑁𝑅 =
SNR𝑅

SNRIdeal
 (19) 

                                                        𝐼𝑆𝑆𝐼𝑀 = SSIM𝑅 (20) 

                                                          𝐼𝐴𝑣𝐷 = 1 − AvDR (21) 

                                                  𝐼𝐶𝐷 = 1 −
CD𝑅

External Cylinder Radius
 (22) 
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                                                  𝐼𝐴𝑟𝐷 = 1 −
ArD𝑅

External Cylinder Area
 (23) 

The overall Image Quality Index is then calculated by taking a weighted average of 

all the indexes. The most useful metrics for our study will be ones that measure the 

accuracy, precision, and quality of the image. Therefore, Area Difference Index 𝐼𝐴𝑟𝐷 , 

Centroid Difference 𝐼𝐶𝐷 and Signal-to-Noise Ratio 𝐼𝑆𝑁𝑅 are each given a weighting of 

0.25. The SSIM value 𝐼𝑆𝑆𝐼𝑀 provides a very useful measure of the contrast differences 

between the test image and ideal image. This has been given a weighting of 0.15. The 

Average Difference 𝐼𝐴𝑣𝐷  and Mean Square Error 𝐼𝑀𝑆𝐸 provide useful additional infor-

mation but are considered a less reliable assessment of quality as error value can easily 

be influenced by the power of received signals without necessarily affecting the ability 

to detect inclusions. These have therefore been given a weighting of 0.05 each. These 

values have been chosen arbitrarily based on the measurement requirements of this pro-

ject.  

 

Fig. 2. Average Subtraction Results Images (a) Results Image, (b) Error Image, (c) Ideal Image, 

(d) Results Polyshape, (e) SSIM Image and (f) Ideal Polyshape. 

4 Results 

The simulation was run using each of the 5 Artefact removal methods, with the differ-

ential methods being calculated using an Average Subtraction or Rotation subtraction 

sub-method on the differential matrix. The results are presented for an inclusion at 𝜋 

radians (Table 1) and for an inclusion at −
𝜋

4
 radians (Table 2). The experiment names 

and metrics are expressed in abbreviated form. The Ideal SNR value was calculated 

following the construction of the Ideal Images and had a value of approximately 7.4 
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dB. The results images for an inclusion at −
𝜋

4
 radians are shown in Fig. 3. A subset of 

the results images for Average Subtraction (AS) methods on an inclusion at 𝜋 radians 

are shown in Fig. 4.  

 

Table 1. Artefact Removal Comparison with Inclusion at 𝜋 radians. 

Experi-

ment 

Subtrac-

tion 

Method 

MSE SNR 

[dB] 

SSIM AvD CD 

[mm] 

ArD IQI 

AS N/A 0.09729 5.36519 0.70400 0.25517 1.21322 0.0018 0.90422 

RS N/A 0.09937 5.44750 0.70809 0.25663 1.40726 0.0005 0.90775 

DNR Average 0.09814 6.06145 0.71389 0.25937 13.06835 0.0233 0.88642 

DNR Rotation 0.10098 6.04735 0.71476 0.26439 11.70547 0.0179 0.89186 

DSR Average 0.09974 5.40451 0.69871 0.25736 2.43316 0.0008 0.90070 

DSR Rotation 0.10008 5.44746 0.69865 0.25737 1.15772 0.0000 0.90726 

SSR Average 0.09462 6.03662 0.73537 0.23888 3.33967 0.0061 0.92886 

SSR Rotation 0.09523 6.06927 0.73697 0.23870 2.94882 0.0072 0.93161 

 

Table 2. Artefact Removal Comparison with Inclusion at −
𝜋

4
 radians. 

Experi-

ment 

Subtrac-

tion 

Method 

MSE SNR 

[dB] 

SSIM AvD CD 

[mm] 

ArD IQI 

AS N/A 0.02934 5.66908 0.80481 0.13335 6.14234 0.0143 0.87828 

RS N/A 0.03214 5.59032 0.80104 0.13886 7.21017 0.0164 0.86969 

DNR Average 0.06838 3.55544 0.73731 0.20546 9.19064 0.0159 0.78002 

DNR Rotation 0.05846 3.94577 0.74968 0.19013 11.2011 0.0000 0.79266 

DSR Average 0.06179 4.60431 0.75460 0.19962 14.3283 0.0141 0.80071 

DSR Rotation 0.06317 4.62941 0.75185 0.20243 12.8656 0.0118 0.80623 

SSR Average 0.02489 6.99660 0.86229 0.11733 1.62966 0.0082 0.95034 

SSR Rotation 0.02589 6.92966 0.86047 0.12060 2.86084 0.0080 0.94248 
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Fig. 3. Results Images for an Inclusion at −
𝜋

4
 radians. Top Row: Average Subtraction – (a) AS, 

(b) DNR, (c) DSR, (d) SSR. Bottom Row: Rotation Subtraction – (e) RS, (f) DNR, (g) DSR, (h) 

SSR. 

 

   (a)         (b)         (c)           (d) 

Fig. 4. Average Subtraction results for an inclusion at 𝜋 radians: (a) AS, (b) DNR, (c) 

DSR, (d) SSR. 

5 Discussion and Conclusion 

Summed Symmetric Differential method had the best Image Quality Index. The Signal-

to-Noise Ratio was the highest for this method in both positions and the contrast simi-

larity meant that this method also had a high SSIM in comparison to the other methods. 

For an inclusion at 𝜋 radians the Average Subtraction, Rotation Subtraction and Dif-

ferential (Symmetric Receiver Type) methods all scored highly in the Centroid Dis-

tance metric. When the inclusion was at −
𝜋

4
 radians, the Summed Symmetric method 

had the best Centroid Distance score.  

The results show that the position of the inclusion can vastly influence the resulting 

image, with every artefact removal method exhibiting differences in image quality 

when the inclusion was moved. When the inclusion is at 𝜋 radians, all images show a 

symmetric split inclusion image. This is likely due to the inclusion being directly in 

front of the transmitting source. As the image is split perfectly either side of the 
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inclusion position, the centroid distance (and to a lesser extent the Area Difference) 

remain accurate. The SSIM is greatly affected though due to the difference in inclusion 

shape between the test image and ideal image. In simulation, the source signal will hit 

the inclusion and the highest peaks are observed as the signal reflections are ‘split’ by 

the inclusion. With Average Subtraction and Summed Symmetric Differential methods, 

there is far greater definition of the inclusion position. To avoid the inclusion position 

having an impact on the result, multiple transmitter groups could be used. If five trans-

mitter triplets are used, such as in [4] with each transmitter within a triplet placed 4.5° 

apart and the triplets placed equally around the perimeter of the cylinder to be imaged, 

the inclusion will only ever be opposite a maximum of one transmitter triplet. If the 

results for each triplet are summed, or a mean value taken, and then imaged the resulting 

image should have improved the definition of the inclusion image, reflected artefacts 

will be minimised and the dependency on inclusion position will be removed. However, 

as the Summed Symmetric Differential methods had reflected artefacts which were sep-

arate from the inclusion image, the effect of summing the results from multiple trans-

mitters could increase the quantity of artefacts seen for this method. Concerning com-

putational time, we found no significant difference among the algorithms used. 

Whilst the Summed Symmetric method scored highly in this study, the experiments 

were performed using simulated cylinders with significantly contrasting electrical prop-

erties. This was performed to prove the algorithms as a proof of concept against con-

trasting mediums. In a realistic scenario, such as brain stroke detection, the contrast will 

be less significant, thus artifacts could be more prominent, lowering SNR values. Future 

studies should aim to use simulated data which equates the electrical properties closer 

to that of human tissues. Further study using measured data and head-mimicking phan-

toms would be an obvious progression from this study to assess the value in these meth-

ods. 

It is also important to note that this study has also focused only on cylindrical inclu-

sions inside a cylinder. Further studies could explore the effect of changing the shape 

and size of the inclusion. 

The Image Quality Index provides a good metric for quantifying the quality of im-

ages. By visually comparing the results images and the IQI, the score seems representa-

tive of the quality of the image. For a more rigorous assessment of the IQI method, 

future study could incorporate a comparison with subjective scoring by a sample of 

medical professionals. 
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