196 research outputs found

    Semantic-aware Transmission for Robust Point Cloud Classification

    Full text link
    As three-dimensional (3D) data acquisition devices become increasingly prevalent, the demand for 3D point cloud transmission is growing. In this study, we introduce a semantic-aware communication system for robust point cloud classification that capitalizes on the advantages of pre-trained Point-BERT models. Our proposed method comprises four main components: the semantic encoder, channel encoder, channel decoder, and semantic decoder. By employing a two-stage training strategy, our system facilitates efficient and adaptable learning tailored to the specific classification tasks. The results show that the proposed system achieves classification accuracy of over 89\% when SNR is higher than 10 dB and still maintains accuracy above 66.6\% even at SNR of 4 dB. Compared to the existing method, our approach performs at 0.8\% to 48\% better across different SNR values, demonstrating robustness to channel noise. Our system also achieves a balance between accuracy and speed, being computationally efficient while maintaining high classification performance under noisy channel conditions. This adaptable and resilient approach holds considerable promise for a wide array of 3D scene understanding applications, effectively addressing the challenges posed by channel noise.Comment: submitted to globecom 202

    Prioritization of risk genes for Alzheimer’s disease: an analysis framework using spatial and temporal gene expression data in the human brain based on support vector machine

    Get PDF
    Background: Alzheimer’s disease (AD) is a complex disorder, and its risk is influenced by multiple genetic and environmental factors. In this study, an AD risk gene prediction framework based on spatial and temporal features of gene expression data (STGE) was proposed.Methods: We proposed an AD risk gene prediction framework based on spatial and temporal features of gene expression data. The gene expression data of providers of different tissues and ages were used as model features. Human genes were classified as AD risk or non-risk sets based on information extracted from relevant databases. Support vector machine (SVM) models were constructed to capture the expression patterns of genes believed to contribute to the risk of AD.Results: The recursive feature elimination (RFE) method was utilized for feature selection. Data for 64 tissue-age features were obtained before feature selection, and this number was reduced to 19 after RFE was performed. The SVM models were built and evaluated using 19 selected and full features. The area under curve (AUC) values for the SVM model based on 19 selected features (0.740 [0.690–0.790]) and full feature sets (0.730 [0.678–0.769]) were very similar. Fifteen genes predicted to be risk genes for AD with a probability greater than 90% were obtained.Conclusion: The newly proposed framework performed comparably to previous prediction methods based on protein-protein interaction (PPI) network properties. A list of 15 candidate genes for AD risk was also generated to provide data support for further studies on the genetic etiology of AD

    The Making of Leaves: How Small RNA Networks Modulate Leaf Development

    Get PDF
    Leaf development is a sequential process that involves initiation, determination, transition, expansion and maturation. Many coding genes and a few non-coding small RNAs (sRNAs) have been identified as being involved in leaf development. sRNAs and their interactions not only determine gene expression and regulation, but also play critical roles in leaf development through their coordination with other genetic networks and physiological pathways. In this review, we first introduce the biogenesis pathways of sRNAs, mainly microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs), and then describe the function of miRNA-transcription factors in leaf development, focusing on guidance by interactive sRNA regulatory networks
    corecore