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Background: Alzheimer’s disease (AD) is a complex disorder, and its risk is
influenced by multiple genetic and environmental factors. In this study, an AD
risk gene prediction framework based on spatial and temporal features of gene
expression data (STGE) was proposed.

Methods: We proposed an AD risk gene prediction framework based on spatial
and temporal features of gene expression data. The gene expression data of
providers of different tissues and ages were used as model features. Human genes
were classified as AD risk or non-risk sets based on information extracted from
relevant databases. Support vector machine (SVM) models were constructed to
capture the expression patterns of genes believed to contribute to the risk of AD.

Results: The recursive feature elimination (RFE) method was utilized for feature
selection. Data for 64 tissue-age features were obtained before feature selection,
and this number was reduced to 19 after RFE was performed. The SVM models
were built and evaluated using 19 selected and full features. The area under curve
(AUC) values for the SVM model based on 19 selected features
(0.740 [0.690–0.790]) and full feature sets (0.730 [0.678–0.769]) were very
similar. Fifteen genes predicted to be risk genes for AD with a probability
greater than 90% were obtained.

Conclusion: The newly proposed framework performed comparably to previous
prediction methods based on protein-protein interaction (PPI) network
properties. A list of 15 candidate genes for AD risk was also generated to
provide data support for further studies on the genetic etiology of AD.
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1 Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative
disorder that is characterized by cognitive impairment and
memory loss. It affected approximately 50 million people
worldwide in 2020, which is expected to increase to 150 million
by 2050 (Breijyeh and Karaman, 2020). Advanced age is the most
important risk factor for AD (Knopman et al., 2021). A significant
increase in the incidence rate of AD was observed in senior citizens
after the age of 65 years (Knopman et al., 2021). Equal incidence
rates of AD were identified for males and females after adjusting for
age, indicating that sex might not be associated with the risk of AD
(Knopman et al., 2021). The pathological features of AD include
senile plaques formed by the accumulation of β-amyloid protein and
neurofibrillary tangles composed of highly phosphorylated τ
proteins. Several hypotheses have been proposed to explain the
pathogenesis of AD, including oxidative stress (Yang et al., 2022),
inflammation (Yang et al., 2022), and DNA damage (Tanaka et al.,
2021). However, no consensus has yet been reached.

Previous studies have indicated that AD is a complex disorder,
and its risk is attributed to multiple genetic and environmental
factors (Carmona et al., 2018; Bertram and Tanzi, 2019). In the last
decade, genome-wide association (GWA) analyses have
significantly contributed to the genetic etiology of AD (Bertram
and Tanzi, 2019). Jansen et al. confirmed 29 risk loci and several
relevant pathways related to AD through a GWA meta-analysis
(Jansen et al., 2019). In addition, Celeste et al. reviewed the
relationship between several AD risk genes, including ABCA7,
BIN1, CASS4, and CD33, and the cellular and neuropathological
characteristics of AD (Karch et al., 2014). Nevertheless, a recent
study indicated that approximately half of the heritability of AD
remains unaccounted (Raybould and Sims, 2021). It is probable
that a large number of susceptibility loci for AD have not yet been
discovered. However, recent studies have indicated that larger-
scale GWA studies in the future are less cost effective due to the
intrinsic deficiency rooted in the study design of GWA studies;
therefore, it might not be a preferable choice for unraveling these
hidden genomic regions that contribute to the risk of AD (Escott-
Price and Hardy, 2022). In this sense, prioritizing AD risk genes
based on evidence gained from different perspectives and then
validating these candidate risk genes in subsequent candidate
gene-based association studies might be an effective strategy for
discovering more relevant genes for AD risk. In a recent study,
Cogill et al. applied machine-learning-based methods using brain
developmental gene expression data to prioritize high-confidence
candidate genes for autism spectrum disorder (Cogill and Wang,
2016). This study established a feasible analysis pipeline for
prioritizing candidate risk genes for complex disorders, using
spatial and temporal gene expression data.

Multiple lines of evidence have indicated that the expression of
AD risk genes has specific spatial and temporal features (Moradifard
et al., 2018; Grubman et al., 2019). Extracting and properly
synthesizing information from these gene expression features
might be an effective way to prioritize the risk genes for AD. In
this study, we aimed to construct and evaluate a machine-learning-
based model to identify high-confidence risk genes for AD using
spatial and temporal gene expression data extracted from a publicly
available database.

2 Materials and methods

The statistical analysis pipeline is shown in Figure 1. In this
study, we propose an AD risk gene prediction framework based on
spatial and temporal features of gene expression data (STGE). In this
analysis framework, the gene expression data of providers of
different tissues and ages were utilized as model features. Human
genes were classified as AD risk or non-risk sets and randomly split
into training and validation sets. Support vector machine (SVM)
models were constructed to capture the expression patterns of genes
that were believed to contribute to the risk of AD in the training set,
which were then applied to the validation set to evaluate model
performance. The STGE model was then applied to a gene set with
an unknown status for AD risk, and a confidence score was assigned
to each gene.

2.1 Data extraction

The data used in the present study were extracted from three
publicly available databases: the GTEx database (https://gtexportal.
org/home/) (GTEx Consortium, 2020), AlzData database (http://
www.alzdata.org/) (Xu et al., 2018), and GWAS catalog (https://
www.ebi.ac.uk/gwas/) (Buniello et al., 2019).

Spatial and temporal expression data for each gene were
obtained from the GTEx database. Gene expression data
related to tissues of the human brain (including the
cerebellum, cortex, anterior cingulate cortex, hippocampus,
substantia nigra, caudate, cerebellar hemisphere, frontal
cortex, hypothalamus, nucleus accumbens, putamen, spinal
cord, and amygdala) were extracted. Data from tissue sample
providers under 20 or over 70 years of age were not included, and
all these providers were healthy. In addition, we also removed
tissue providers who scored 0 or 4 points on the death
classification provided by GTEx database basing on the 4-
point Hardy Scale (Hardy et al., 1985), because those scores
represent the death of the provider is associated with chronic
disease. Specifically, the score of 0 added by GTEx database
stands for ventilator case (all cases on a ventilator
immediately before death), and the score of 4 stands for slow
death case (death after a long illness, with a terminal phase longer
than 1 day; deaths that are not unexpected). Finally, gene
expression data in 13 types of brain-related tissues for
14,697 genes were extracted from 317 tissue sample providers
of various ages and genders (Supplementary Table S1 and
Supplementary Figure S1).

AlzData is a database for scoring correlations between human
genes and the risk of AD, based on evidence from high-
throughput omics data. The CFG scores ranged from 0 to 5,
with a higher score indicating a stronger correlation between the
gene and AD. Genes with scores of 4–5 were extracted to form the
AD risk gene set (“the right answer”). For genes with scores of
0–3, we supplemented the “DISEASE/TRAIT” (we always call it
“trait” for short) from the GWAS catalog and excluded genes
related to AD to obtain AD non-risk genes. Finally, 3,899 genes
comprising 340 AD risk genes and 3,559 non-AD risk genes were
identified, and these genes’ CFG scores and GWAS traits are
shown in Supplementary Table S2.
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2.2 Model construction and evaluation

The SVM models were constructed based on spatial and
temporal gene expression data extracted from relevant databases
using the e1071 package of the R project, and both spatial and
temporal aspects of the data are contained in the data features, which
is going to be used for feature selection. Gene expression data were
first grouped by the tissue type and age of the tissue providers. The
median expression level of each gene in the tissue type age group was
calculated and used as features in the SVM models. A total of
64 brain tissue-related features were obtained for model
construction (Supplementary Table S3). The dataset was
randomly divided into training and validation sets in a ratio of 7:
3. There were 238 AD risk genes and 2,491 AD non-risk genes in the
training set. The SMOTE function in the DMwR package was used
to balance gene numbers. Feature selection was conducted using the
caret package, and 19 spatial and temporal features were selected
based on recursive feature elimination (RFE). Accuracy and Kappa
statistics were chosen as the evaluation indicators to estimate the
performance of the selected features, and we chose the feature set
with both the greatest value and least variance to build the SVM
model. Parameter optimization was performed using a grid search
strategy. Parameters including model accuracy, specificity,
sensitivity, and area under the curve (AUC) were utilized to
evaluate the performance of the SVM model. The R packages
pROC and ROCR were used to draw the ROC curve and
calculate the AUC, respectively. The R package ggplot2 was used
for data visualization.

2.3 Results validation

After the genes with high confidence were predicted by SVM
model, the normalized expression in AlzData database

(http://www.alzdata.org/Normalized_differential1.php) will be
used for providing these genes’ differential expression data.
Besides, KOBAS platform (http://kobas.cbi.pku.edu.cn/) will be
used to do gene ontology (GO) and KEGG pathway enrichment
analysis in all available databases (including OMIM, KEGG Disease
and NHGRI GWAS Catalog).

3 Results

3.1 Feature selection based on recursive
feature elimination

RFE was used for feature selection. Data for 64 tissue-age
features were obtained before feature selection, and this number
was reduced to 19 after RFE was performed. SVM models based on
each of these 19 features (the gene expression levels were obtained by
median values of samples) were built and evaluated for accuracy,
specificity, sensitivity, and AUC (Table 1). The feature with the
highest AUCwas the human tissue of the brain cerebellum at the age
of 40–49 (AUC = 0.688).

3.2 Comparison and validation of SVM
models

SVM models were built and evaluated using 19 selected and full
features (Table 2 and Figure 2). The AUC values for the SVM model
based on 19 selected features (0.74 [0.690–0.790]) and full feature sets
(0.730 [0.678–0.769]) were very similar. To evaluate model robustness,
we also constructed these models based on the mean expression level of
each gene in the tissue type age group. In addition, to examine the
potential effects of sex, SVM models were constructed based on the
expression data from male and female samples. The results are

FIGURE 1
Analysis pipeline of the model construction and evaluations.
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summarized in Supplementary Table S4. There are no significant
differences when mean values were utilized compared to median
values. The model performance based on males or females was also
very similar to that of models constructed using all samples. Finally, we
chose the selected feature and median values to construct the SVM
model because of its highest AUC. Besides, some known AD risk genes
(such as APOE, PICALMandBIN1)were recoveredwith the final SVM
model, and the probabilities of them being classified as AD risk genes
are ranged from 0.723–0.783 and shown in Supplementary Table S5.

3.3 Risk genes of AD predicted by the SVM
model

Based on the SVM models constructed using tissue-age-specific
gene expression data, the risk contributions to AD onset and

development were evaluated for 10,798 genes that were not
included in the model construction and evaluations (the external
gene set). 15 genes predicted to be risk genes for AD with a
probability greater than 90% were obtained (Table 3). Among
these genes, GUCY1B3 had the highest confidence score as a risk
gene for AD (0.93). To further investigate this gene set, we examined
the gene expression patterns of these 15 genes in the human brain
and made a heatmap showing in Supplementary Figure S2. In
addition, 191 risk genes for AD with a probability greater than
80% are shown in Supplementary Table S6.

3.4 Differential gene expression analysis and
pathway/ontology analysis

After the normalized differential gene expression analysis, there
exist 8 genes among 15 candidate genes expressing differentially in
AD. The differential expression data of these 8 genes are shown in
Table 4. The GO and KEGG pathway enrichment analyses find out
15 pathways that are statistically correlated with candidate genes,
which are shown in Supplementary Figures S3, S4.

4 Discussion

In the present study, we propose a novel machine-learning-
based analysis pipeline using data extracted from the GTEx database

TABLE 1 The mean accuracy, sensitivity, specificity and AUC of each model built by each selected feature from the RFE method.

Tissue Age Accuracy Sensitivity Specificity AUC

Brain-Cerebellum 40–49 0.604 0.657 0.599 0.688

Brain-Amygdala 50–59 0.768 0.441 0.799 0.684

Brain-Frontal Cortex BA9 50–59 0.657 0.598 0.663 0.683

Brain-Anterior cingulate cortex BA24 30–39 0.67 0.559 0.681 0.683

Brain-Putamen basal ganglia 30–39 0.645 0.569 0.653 0.682

Brain-Anterior cingulate cortex BA24 40–49 0.701 0.529 0.717 0.678

Brain-Cerebellum 60–69 0.551 0.676 0.539 0.674

Brain-Cerebellar Hemisphere 60–69 0.689 0.549 0.702 0.667

Brain-Frontal Cortex BA9 60–69 0.644 0.520 0.656 0.665

Brain-Substantia nigra 40–49 0.715 0.500 0.736 0.664

Brain-Putamen basal ganglia 60–69 0.691 0.520 0.707 0.655

Brain-Caudate basal ganglia 30–39 0.695 0.559 0.708 0.640

Brain-Anterior cingulate cortex BA24 50–59 0.733 0.461 0.759 0.636

Brain-Cerebellum 30–39 0.770 0.461 0.800 0.633

Brain-Substantia nigra 60–69 0.774 0.461 0.803 0.628

Brain-Amygdala 60–69 0.736 0.480 0.760 0.626

Brain-Nucleus accumbens basal ganglia 40–49 0.564 0.598 0.561 0.621

Brain-Nucleus accumbens basal ganglia 60–69 0.561 0.539 0.563 0.606

Brain-Hypothalamus 30–39 0.555 0.52 0.558 0.604

TABLE 2 The average accuracy, sensitivity, specificity and AUC of the two
models based on ten-fold cross validation.

Selected feature set Full feature set

Accuracy 0.756 ± 0.016 0.754 ± 0.023

Sensitivity 0.588 ± 0.069 0.500 ± 0.054

Specificity 0.772 ± 0.016 0.778 ± 0.021

AUC(95%CI) 0.740 (0.690–0.790) 0.730 (0.678–0.769)
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to prioritize candidate AD risk genes. The performance measured by
the AUC of the SVM models was promising, and a list of
15 candidate AD risk genes was presented according to the
prediction model. In the last decade, several studies have been
published to identify candidate AD risk genes, and most of these
studies were based on protein–protein interaction (PPI) networks to
identify hub genes using GWA data. The model performance
measured by the AUC of these previous studies ranged from
0.63 to 0.84 depending on different settings (Luo et al., 2019;
Lagisetty et al., 2022; Wang et al., 2022; Pei et al., 2023). The
methods used in these comparative studies and their AUC are
shown in the Supplementary Table S7. Unlike these previous
studies, the STGE framework was used to predict AD candidate
genes based on the spatial and temporal features of AD risk gene
expression. The performance of our model (AUC = 0.74) was
comparable to that of previous studies. In this sense, the present
study proposed and validated an alternative framework for
prioritizing risk genes for AD. In the future, an analysis
framework integrating information from gene expression features
and PPI network properties might be a promising method to further
promote the accuracy and effectiveness of prediction models for
prioritizing candidate AD risk genes.

Although most patients with AD experience the first symptom
in their mid-60s, previous studies have indicated that changes in the
molecular levels occur at a much earlier stage (Egan et al., 2019;
Vermunt et al., 2019). A previously published family-based
longitudinal study has shown that familial AD may have a long

prodromal phase of several years (Chiotis et al., 2018). A recent
cohort study also indicated that plasma phospho-tau181 levels were
much higher from 16 years prior to the onset of AD symptoms in
AD patients with specific DNA mutations (Wang et al., 2021;
Karikari et al., 2022). The results of the current study offer new
evidence at the gene expression level for prodromal changes in AD
patients. Although AD is a late-onset disorder, more than half of the
selected features were obtained from sample providers before the age
of 60 years. Five of the 19 features, including tissues of the anterior
cingulate cortex, putamen basal ganglia, caudate basal ganglia,
cerebellum, and hypothalamus, were obtained from providers
who are 30–39 years old. In accordance with multiple lines of
previous evidence, these findings indicate that molecular-level
changes might be identified several years before early symptoms
appear in patients with AD. Nevertheless, since a couple of the AD
risk genes used in this study were extracted from studies focusing on
early-onset AD, we need to be cautious in interpreting these results.
Future research using longitudinal data might provide more clues
for identifying prodromal biomarkers for AD and, in turn, shed light
on early screening and prevention of this complex
neurodegenerative disorder.

Among the 15 candidate genes identified through STGE, a few
are of particular interest. Sine oculis homeobox homolog 3 (SIX3)
encodes a type of transcription factor belonging to the sine oculis
homeobox transcription factor family (Steinmetz et al., 2010).
Multiple lines of evidence based on animal models have linked
this locus to brain development (Steinmetz et al., 2010; Schacht et al.,

FIGURE 2
ROC curves of the SVM models constructed based on the median gene expression levels in different tissue-age groups.
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2020). A recent GWA study associated genetic polymorphisms of
SIX3 with math ability, and its weakening was considered a sign of
the progression of AD patients (Lee et al., 2018). Actin-related
protein 3B (ACTR3B) encodes amember of the actin-related protein
(ARP) family, which might regulate and induce cell shape changes
and motility (Hu et al., 2018). Several previous studies have linked
ACTR3B to brain aging progression, although no direct GWA study
has validated the connection between genetic polymorphisms of
these loci and AD (Hu et al., 2018; Seefelder and Kochanek, 2021). In
addition, multiple animal models and population-based evidence
have been published for dopamine receptor D2 (DRD2) and
gamma-aminobutyric acid type A receptor subunit alpha 5
(GABRA5) being associated with brain-related disorders and
traits, including schizophrenia, bipolar disorder, Parkinson’s
disorder, and neurotransmission (Prisciandaro et al., 2017;
Escamilla et al., 2018; Mundorf et al., 2021; Zhang et al., 2021).
In a recent study, Blum et al. concluded that the DRD2 Taq1A
A1 allele might increase the risk of Alzheimer’s aging in African
Americans by integrating and reviewing previously published data
(Blum et al., 2018). Additionally, the genes BAG Cochaperone 3
(BAG3), inositol polyphosphate-5-phosphatase A (INPP5A),
seizure related 6 homolog (SEZ6), and intercellular adhesion
molecule 5 (ICAM5) are involved in the progression of AD has
been proposed in several functional studies using animal models
(Hoarau et al., 2011; Paetau et al., 2017; Zhu et al., 2018; Zhou et al.,
2020; Zhu et al., 2021). Within these genes, through proteomic
study, BAG3 may affect AD by influencing the interpretation of Aβ
and tau protein, and patients with AD have much lower levels of
SEZ6 in their cerebrospinal fluid than those without dementia
(Khoonsari et al., 2016; Gonzalez-Rodriguez et al., 2021). Further
in vivo and in vitro studies are needed to validate the functional
connections between the risk of AD and the genes on the
predicted list.

Three of the 15 pathways identified by GO and KEGG pathway
enrichment analyses are worthy of attention, including regulation of
synapse structural plasticity, branching morphogenesis of a nerve
and forced vital capacity. According to a review, synapse structural
plasticity is related to the number of spines, and post-mortem
reports of Alzheimer’s brains showed reduced spine number in
the hippocampus and cortex (Chidambaram et al., 2019). One
research studying novel compounds’ effect on neuronal
branching morphogenesis of PC12 cells indicates that branching
morphogenesis is one of the entry points for research to promote
recovery of nerve regeneration following neurodegenerative
diseases, like AD (Katebi et al., 2019). A prospective cohort study
of 431,834 individuals shows that per unit decrease in lung function
measure was each associated with increased risk for all-cause
dementia (including AD). As for forced vital capacity, its hazard
ratio (HR) is 1.16 and p-value is 2.04 × 10−5 (Ma et al., 2023).

The current study has several limitations. First, there is still
much space for the promotion of STGE, although the performance
of STGE is comparable to that of previous models based on PPI
network properties. In addition, as bioinformatics data mining is
based on publicly available databases, the completeness of the
current work might be limited owing to data availability. The
gene expression data in the brain substantia nigra in the age
group of 30–39 years were unavailable from the database;
therefore, this feature was not included in the model

TABLE 3 Genes predicted by the SVM model with their confidence score,
location, length (bp) and biotype.

Genes Confidence Location Length (bp) Type

SIX3 0.911 2p21 4,370 protein
coding

EFEMP1 0.904 2p16.1 58,197 protein
coding

GUCY1B3 0.939 4p32.1 48,820 protein
coding

MTPN 0.921 7q33 50,600 protein
coding

ACTR3B 0.904 7q36.2 311,231 protein
coding

BAG3 0.932 10q26.11 26,440 protein
coding

INPP5A 0.924 10q26.3 245,697 protein
coding

LRRC10B 0.917 11q12.2 2,270 protein
coding

ELMOD1 0.914 11q22.3 75,771 protein
coding

DRD2 0.900 11q23.2 66,087 protein
coding

GABRA5 0.922 15q12 82,490 protein
coding

PITPNM3 0.916 17p13.2-
p13.1

105,293 protein
coding

SEZ6 0.909 17q11.2 51,540 protein
coding

ICAM5 0.922 19p13.2 7,428 protein
coding

CSDC2 0.916 22q13.2 16,732 protein
coding

TABLE 4 Differential expression results of candidate genes with FDRs < 0.05.

Genes Brain region log2 FoldChange p-value FDR

EFEMP1 Hippocampus 0.52 0.001 0.020

GUCY1B3 Hippocampus −0.24 0.004 0.048

Temporal Cortex −0.73 0.000 0.000

ACTR3B Temporal Cortex −0.8 0.001 0.006

BAG3 Temporal Cortex 0.81 0.000 0.001

Frontal Cortex 0.42 0.001 0.012

INPP5A Temporal Cortex −0.47 0.000 0.001

GABRA5 Hippocampus −0.57 0.003 0.036

Temporal Cortex −1.37 0.000 0.000

SEZ6 Temporal Cortex −1.37 0.000 0.000

ICAM5 Entorhinal Cortex −0.61 0.001 0.015

Frontal Cortex −0.41 0.000 0.000

Frontiers in Genetics frontiersin.org06

Wang et al. 10.3389/fgene.2023.1190863

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1190863


construction and evaluation. Besides, although the data for training
the model contains non-coding RNA, which have been shown to
play an important role in the pathogenesis of complex disorders
(Goyal et al., 2018), all candidate AD risk genes are protein-coding
genes in the current study. Furthermore, the data we used in our
research can only correlate to tissues, so we were unable to associate
these genes with specific brain cell types.

In summary, in the present study, an efficient analysis
framework based on spatial and temporal features of gene
expression was proposed to prioritize AD risk genes. The newly
proposed framework performed comparably to previous prediction
methods based on PPI network properties. A list of 15 candidate
genes for AD risk was also generated to provide data support for
further studies on the genetic etiology of AD.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.gtexportal.org/home/datasets;
https://www.ebi.ac.uk/gwas/docs/file-downloads; http://www.
alzdata.org/CFG_rank1.php.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation and
the institutional requirements.

Author contributions

TZ, SW, and XF designed the study. TZ, SW, and XF wrote the
main manuscript text. SW, XF and XW conducted the statistical
analysis. SW, XF, CY, and YY prepared all the tables, figures and

Supplementary Materials for this manuscript. All authors
contributed to the article and approved the submitted version.

Funding

This study was supported by the National Natural Science
Foundation of China (NSFC) Young Scientists Fund (31900407).

Acknowledgments

We would thank Yingying Wei who has provided insightful
suggestions and significantly promoted the manuscript. A preprint
version of this manuscript could be found on medRxic (link: https://
www.medrxiv.org/content/10.1101/2023.02.06.23285522v1).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1190863/
full#supplementary-material

References

Bertram, L., and Tanzi, R. E. (2019). Alzheimer disease risk genes: 29 and counting.
Nat. Rev. Neurol. 15 (4), 191–192. doi:10.1038/s41582-019-0158-4

Blum, K., Badgaiyan, R. D., Dunston, G. M., Baron, D., Modestino, E. J., McLaughlin,
T., et al. (2018). The DRD2 Taq1A A1 allele may magnify the risk of Alzheimer’s in
aging african-Americans. Mol. Neurobiol. 55 (7), 5526–5536. doi:10.1007/s12035-017-
0758-1

Breijyeh, Z., and Karaman, R. (2020). Comprehensive review on Alzheimer’s disease:
causes and treatment. Molecules 25 (24), 5789. doi:10.3390/molecules25245789

Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone,
C., et al. (2019). The NHGRI-EBI GWAS Catalog of published genome-wide association
studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47 (D1),
D1005–D1012. doi:10.1093/nar/gky1120

Carmona, S., Hardy, J., and Guerreiro, R. (2018). The genetic landscape of
Alzheimer disease. Handb. Clin. Neurol. 148, 395–408. doi:10.1016/B978-0-444-
64076-5.00026-0

Chidambaram, S. B., Rathipriya, A. G., Bolla, S. R., Bhat, A., Ray, B.,
Mahalakshmi, A. M., et al. (2019). Dendritic spines: revisiting the physiological
role. Prog. Neuropsychopharmacol. Biol. Psychiatry 92, 161–193. doi:10.1016/j.
pnpbp.2019.01.005

Chiotis, K., Saint-Aubert, L., Rodriguez-Vieitez, E., Leuzy, A., Almkvist, O.,
Savitcheva, I., et al. (2018). Longitudinal changes of tau PET imaging in relation to
hypometabolism in prodromal and Alzheimer’s disease dementia. Mol. Psychiatry 23
(7), 1666–1673. doi:10.1038/mp.2017.108

Cogill, S., and Wang, L. (2016). Support vector machine model of developmental
brain gene expression data for prioritization of Autism risk gene candidates.
Bioinformatics 32 (23), 3611–3618. doi:10.1093/bioinformatics/btw498

Egan, M. F., Kost, J., Voss, T., Mukai, Y., Aisen, P. S., Cummings, J. L., et al. (2019).
Randomized trial of verubecestat for prodromal Alzheimer’s disease. N. Engl. J. Med.
380 (15), 1408–1420. doi:10.1056/NEJMoa1812840

Escamilla, R., Camarena, B., Saracco-Alvarez, R., Fresán, A., Hernández, S., and
Aguilar-García, A. (2018). Association study between COMT, DRD2, and DRD3 gene
variants and antipsychotic treatment response in Mexican patients with schizophrenia.
Neuropsychiatr. Dis. Treat. 14, 2981–2987. doi:10.2147/NDT.S176455

Escott-Price, V., and Hardy, J. (2022). Genome-wide association studies for
Alzheimer’s disease: bigger is not always better. Brain Commun. 4 (3), fcac125.
doi:10.1093/braincomms/fcac125

Gonzalez-Rodriguez, M., Villar-Conde, S., Astillero-Lopez, V., Villanueva-Anguita,
P., Ubeda-Banon, I., Flores-Cuadrado, A., et al. (2021). Neurodegeneration and

Frontiers in Genetics frontiersin.org07

Wang et al. 10.3389/fgene.2023.1190863

https://www.gtexportal.org/home/datasets
https://www.ebi.ac.uk/gwas/docs/file-downloads
http://www.alzdata.org/CFG_rank1.php
http://www.alzdata.org/CFG_rank1.php
https://www.medrxiv.org/content/10.1101/2023.02.06.23285522v1
https://www.medrxiv.org/content/10.1101/2023.02.06.23285522v1
https://www.frontiersin.org/articles/10.3389/fgene.2023.1190863/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1190863/full#supplementary-material
https://doi.org/10.1038/s41582-019-0158-4
https://doi.org/10.1007/s12035-017-0758-1
https://doi.org/10.1007/s12035-017-0758-1
https://doi.org/10.3390/molecules25245789
https://doi.org/10.1093/nar/gky1120
https://doi.org/10.1016/B978-0-444-64076-5.00026-0
https://doi.org/10.1016/B978-0-444-64076-5.00026-0
https://doi.org/10.1016/j.pnpbp.2019.01.005
https://doi.org/10.1016/j.pnpbp.2019.01.005
https://doi.org/10.1038/mp.2017.108
https://doi.org/10.1093/bioinformatics/btw498
https://doi.org/10.1056/NEJMoa1812840
https://doi.org/10.2147/NDT.S176455
https://doi.org/10.1093/braincomms/fcac125
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1190863


astrogliosis in the human CA1 hippocampal subfield are related to hsp90ab1 and
bag3 in Alzheimer’s disease. Int. J. Mol. Sci. 23 (1), 165. doi:10.3390/ijms23010165

Goyal, N., Kesharwani, D., and Datta, M. (2018). Lnc-ing non-coding RNAs with
metabolism and diabetes: roles of lncRNAs. Cell Mol. Life Sci. 75 (10), 1827–1837.
doi:10.1007/s00018-018-2760-9

Grubman, A., Chew, G., Ouyang, J. F., Sun, G., Choo, X. Y., McLean, C., et al. (2019).
A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals
cell-type-specific gene expression regulation. Nat. Neurosci. 22 (12), 2087–2097. doi:10.
1038/s41593-019-0539-4

GTEx Consortium (2020). The GTEx Consortium atlas of genetic regulatory effects
across human tissues. Science 369 (6509), 1318–1330. doi:10.1126/science.aaz1776

Hardy, J. A., Wester, P., Winblad, B., Gezelius, C., Bring, G., and Eriksson, A. (1985).
The patients dying after long terminal phase have acidotic brains; implications for
biochemical measurements on autopsy tissue. J. Neural Transm. 61 (3-4), 253–264.
doi:10.1007/BF01251916

Hoarau, J. J., Krejbich-Trotot, P., Jaffar-Bandjee, M. C., Das, T., Thon-Hon, G. V.,
Kumar, S., et al. (2011). Activation and control of CNS innate immune responses in
health and diseases: a balancing act finely tuned by neuroimmune regulators (NIReg).
CNS Neurol. Disord. Drug Targets 10 (1), 25–43. doi:10.2174/187152711794488601

Hu, Y., Pan, J., Xin, Y., Mi, X., Wang, J., Gao, Q., et al. (2018). Gene expression
analysis reveals novel gene signatures between Young and old adults in human
prefrontal cortex. Front. Aging Neurosci. 10, 259. doi:10.3389/fnagi.2018.00259

Jansen, I. E., Savage, J. E., Watanabe, K., Bryois, J., Williams, D. M., Steinberg, S., et al.
(2019). Genome-wide meta-analysis identifies new loci and functional pathways
influencing Alzheimer’s disease risk. Nat. Genet. 51 (3), 404–413. doi:10.1038/
s41588-018-0311-9

Karch, C. M., Cruchaga, C., and Goate, A. M. (2014). Alzheimer’s disease genetics:
from the bench to the clinic. Neuron 83 (1), 11–26. doi:10.1016/j.neuron.2014.05.041

Karikari, T. K., Ashton, N. J., Brinkmalm, G., Brum, W. S., Benedet, A. L., Montoliu-
Gaya, L., et al. (2022). Blood phospho-tau in alzheimer disease: analysis, interpretation,
and clinical utility. Nat. Rev. Neurol. 18 (7), 400–418. Epub ahead of print. doi:10.1038/
s41582-022-00665-2

Katebi, S., Esmaeili, A., Ghaedi, K., and Zarrabi, A. (2019). Superparamagnetic iron
oxide nanoparticles combined with NGF and quercetin promote neuronal branching
morphogenesis of PC12 cells. Int. J. Nanomedicine 14, 2157–2169. doi:10.2147/IJN.
S191878

Khoonsari, P. E., Häggmark, A., Lönnberg, M., Mikus, M., Kilander, L., Lannfelt, L.,
et al. (2016). Analysis of the cerebrospinal fluid proteome in Alzheimer’s disease. PLoS
One 11 (3), e0150672. doi:10.1371/journal.pone.0150672

Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman,
B. T., et al. (2021). Alzheimer disease.Nat. Rev. Dis. Prim. 7 (1), 33. doi:10.1038/s41572-
021-00269-y

Lagisetty, Y., Bourquard, T., Al-Ramahi, I., Mangleburg, C. G., Mota, S., Soleimani, S.,
et al. (2022). Identification of risk genes for Alzheimer’s disease by gene embedding. Cell
Genom 2 (9), 100162. doi:10.1016/j.xgen.2022.100162

Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., et al. (2018).
Gene discovery and polygenic prediction from a genome-wide association study of
educational attainment in 1.1 million individuals.Nat. Genet. 50 (8), 1112–1121. doi:10.
1038/s41588-018-0147-3

Luo, P., Tian, L. P., Ruan, J., and Wu, F. X. (2019). Disease gene prediction by
integrating PPI networks, clinical RNA-seq data and OMIM data. IEEE/ACM Trans.
Comput. Biol. Bioinform. 16 (1), 222–232. doi:10.1109/TCBB.2017.2770120

Ma, Y. H., Shen, L. X., Li, Y. Z., Leng, Y., Yang, L., Chen, S. D., et al. (2023). Lung
function and risk of incident dementia: A prospective cohort study of
431,834 individuals. Brain Behav. Immun. 109, 321–330. doi:10.1016/j.bbi.2023.02.009

Moradifard, S., Hoseinbeyki, M., Ganji, S. M., and Minuchehr, Z. (2018). Analysis of
microRNA and gene expression profiles in Alzheimer’s disease: A meta-analysis
approach. Sci. Rep. 8 (1), 4767. doi:10.1038/s41598-018-20959-0

Mundorf, A., Kubitza, N., Hünten, K., Matsui, H., Juckel, G., Ocklenburg, S., et al.
(2021). Maternal immune activation leads to atypical turning asymmetry and reduced

DRD2 mRNA expression in a rat model of schizophrenia. Behav. Brain Res. 414,
113504. doi:10.1016/j.bbr.2021.113504

Paetau, S., Rolova, T., Ning, L., and Gahmberg, C. G. (2017). Neuronal ICAM-5
inhibits microglia adhesion and phagocytosis and promotes an anti-inflammatory
response in LPS stimulated microglia. Front. Mol. Neurosci. 10, 431. doi:10.3389/
fnmol.2017.00431

Pei, Y., Chen, S., Zhou, F., Xie, T., and Cao, H. (2023). Construction and evaluation of
Alzheimer’s disease diagnostic prediction model based on genes involved in mitophagy.
Front. Aging Neurosci. 15, 1146660. doi:10.3389/fnagi.2023.1146660

Prisciandaro, J. J., Tolliver, B. K., Prescot, A. P., Brenner, H. M., Renshaw, P. F.,
Brown, T. R., et al. (2017). Unique prefrontal GABA and glutamate disturbances in co-
occurring bipolar disorder and alcohol dependence. Transl. Psychiatry 7 (7), e1163.
doi:10.1038/tp.2017.141

Raybould, R., and Sims, R. (2021). Searching the dark genome for Alzheimer’s disease
risk variants. Brain Sci. 11 (3), 332. doi:10.3390/brainsci11030332

Schacht, M. I., Schomburg, C., and Bucher, G. (2020). six3 acts upstream of foxQ2 in
labrum and neural development in the spider Parasteatoda tepidariorum. Dev. Genes
Evol. 230 (2), 95–104. doi:10.1007/s00427-020-00654-9

Seefelder, M., and Kochanek, S. (2021). A meta-analysis of transcriptomic profiles of
Huntington’s disease patients. PLoS One 16 (6), e0253037. doi:10.1371/journal.pone.
0253037

Steinmetz, P. R., Urbach, R., Posnien, N., Eriksson, J., Kostyuchenko, R. P., Brena, C.,
et al. (2010). Six3 demarcates the anterior-most developing brain region in bilaterian
animals. Evodevo 1 (1), 14. doi:10.1186/2041-9139-1-14

Tanaka, H., Kondo, K., Fujita, K., Homma, H., Tagawa, K., Jin, X., et al. (2021).
HMGB1 signaling phosphorylates Ku70 and impairs DNA damage repair in
Alzheimer’s disease pathology. Commun. Biol. 4 (1), 1175. doi:10.1038/s42003-021-
02671-4

Vermunt, L., Sikkes, S. A. M., van den Hout, A., Handels, R., Bos, I., van der Flier, W.
M., et al. (2019). Duration of preclinical, prodromal, and dementia stages of Alzheimer’s
disease in relation to age, sex, and APOE genotype. Alzheimers Dement. 15 (7), 888–898.
doi:10.1016/j.jalz.2019.04.001

Wang, Y., Chen, G., and Shao,W. (2022). Identification of ferroptosis-related genes in
Alzheimer’s disease based on bioinformatic analysis. Front. Neurosci. 16, 823741. doi:10.
3389/fnins.2022.823741

Wang, Y. L., Chen, J., Du, Z. L., Weng, H., Zhang, Y., Li, R., et al. (2021). Plasma
p-tau181 level predicts neurodegeneration and progression to Alzheimer’s
dementia: A longitudinal study. Front. Neurol. 12, 695696. doi:10.3389/fneur.
2021.695696

Xu, M., Zhang, D. F., Luo, R., Wu, Y., Zhou, H., Kong, L. L., et al. (2018). A systematic
integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub
genes as important upstream regulators in Alzheimer’s disease. Alzheimers Dement. 14
(2), 215–229. doi:10.1016/j.jalz.2017.08.012

Yang, Y., Wang, L., Zhang, C., Guo, Y., Li, J., Wu, C., et al. (2022). Ginsenoside
Rg1 improves Alzheimer’s disease by regulating oxidative stress, apoptosis, and
neuroinflammation through Wnt/GSK-3β/β-catenin signaling pathway. Chem. Biol.
Drug Des. 99 (6), 884–896. doi:10.1111/cbdd.14041

Zhang, W., Xiong, B. R., Zhang, L. Q., Huang, X., Yuan, X., Tian, Y. K., et al. (2021).
The role of the GABAergic system in diseases of the central nervous system.
Neuroscience 470, 88–99. doi:10.1016/j.neuroscience.2021.06.037

Zhou, J., Chow, H. M., Liu, Y., Wu, D., Shi, M., Li, J., et al. (2020). Cyclin-dependent
kinase 5-dependent BAG3 degradation modulates synaptic protein turnover. Biol.
Psychiatry 87 (8), 756–769. doi:10.1016/j.biopsych.2019.11.013

Zhu, J. W., Jia, W. Q., Zhou, H., Li, Y. F., Zou, M. M., Wang, Z. T., et al. (2021).
Deficiency of TRIM32 impairs motor function and purkinje cells in mid-aged mice.
Front. Aging Neurosci. 13, 697494. doi:10.3389/fnagi.2021.697494

Zhu, K., Xiang, X., Filser, S., Marinković, P., Dorostkar, M. M., Crux, S., et al. (2018).
Beta-site amyloid precursor protein cleaving enzyme 1 inhibition impairs synaptic
plasticity via seizure protein 6. Biol. Psychiatry 83 (5), 428–437. doi:10.1016/j.biopsych.
2016.12.023

Frontiers in Genetics frontiersin.org08

Wang et al. 10.3389/fgene.2023.1190863

https://doi.org/10.3390/ijms23010165
https://doi.org/10.1007/s00018-018-2760-9
https://doi.org/10.1038/s41593-019-0539-4
https://doi.org/10.1038/s41593-019-0539-4
https://doi.org/10.1126/science.aaz1776
https://doi.org/10.1007/BF01251916
https://doi.org/10.2174/187152711794488601
https://doi.org/10.3389/fnagi.2018.00259
https://doi.org/10.1038/s41588-018-0311-9
https://doi.org/10.1038/s41588-018-0311-9
https://doi.org/10.1016/j.neuron.2014.05.041
https://doi.org/10.1038/s41582-022-00665-2
https://doi.org/10.1038/s41582-022-00665-2
https://doi.org/10.2147/IJN.S191878
https://doi.org/10.2147/IJN.S191878
https://doi.org/10.1371/journal.pone.0150672
https://doi.org/10.1038/s41572-021-00269-y
https://doi.org/10.1038/s41572-021-00269-y
https://doi.org/10.1016/j.xgen.2022.100162
https://doi.org/10.1038/s41588-018-0147-3
https://doi.org/10.1038/s41588-018-0147-3
https://doi.org/10.1109/TCBB.2017.2770120
https://doi.org/10.1016/j.bbi.2023.02.009
https://doi.org/10.1038/s41598-018-20959-0
https://doi.org/10.1016/j.bbr.2021.113504
https://doi.org/10.3389/fnmol.2017.00431
https://doi.org/10.3389/fnmol.2017.00431
https://doi.org/10.3389/fnagi.2023.1146660
https://doi.org/10.1038/tp.2017.141
https://doi.org/10.3390/brainsci11030332
https://doi.org/10.1007/s00427-020-00654-9
https://doi.org/10.1371/journal.pone.0253037
https://doi.org/10.1371/journal.pone.0253037
https://doi.org/10.1186/2041-9139-1-14
https://doi.org/10.1038/s42003-021-02671-4
https://doi.org/10.1038/s42003-021-02671-4
https://doi.org/10.1016/j.jalz.2019.04.001
https://doi.org/10.3389/fnins.2022.823741
https://doi.org/10.3389/fnins.2022.823741
https://doi.org/10.3389/fneur.2021.695696
https://doi.org/10.3389/fneur.2021.695696
https://doi.org/10.1016/j.jalz.2017.08.012
https://doi.org/10.1111/cbdd.14041
https://doi.org/10.1016/j.neuroscience.2021.06.037
https://doi.org/10.1016/j.biopsych.2019.11.013
https://doi.org/10.3389/fnagi.2021.697494
https://doi.org/10.1016/j.biopsych.2016.12.023
https://doi.org/10.1016/j.biopsych.2016.12.023
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1190863

	Prioritization of risk genes for Alzheimer’s disease: an analysis framework using spatial and temporal gene expression data ...
	1 Introduction
	2 Materials and methods
	2.1 Data extraction
	2.2 Model construction and evaluation
	2.3 Results validation

	3 Results
	3.1 Feature selection based on recursive feature elimination
	3.2 Comparison and validation of SVM models
	3.3 Risk genes of AD predicted by the SVM model
	3.4 Differential gene expression analysis and pathway/ontology analysis

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


