207 research outputs found

    Micro-nano scales flowing simulation in shale gas

    Get PDF
    The storage space of shale reservoir is mainly composed of complicated nanoscale pore, in which the gas exists in the form of absorbed gas and free gas. Due to the complicated pore structure and various gas storage states, gas flowing in the pore space is affected by multiple transport mechanisms including adsorption, desorption, Darcy flow, slippage and diffusion, etc. Therefore, a comprehensive research on the effects of transport mechanisms on shale gas flow is the key to study the shale gas migration rule, evaluate production capacity, and make reasonable development plan. Please download the full abstract below

    Critical Temperature Prediction of Superconductors Based on Atomic Vectors and Deep Learning

    Get PDF
    In this paper, a hybrid neural network (HNN) that combines a convolutional neural network (CNN) and long short-term memory neural network (LSTM) is proposed to extract the high-level characteristics of materials for critical temperature (Tc) prediction of superconductors. Firstly, by obtaining 73,452 inorganic compounds from the Materials Project (MP) database and building an atomic environment matrix, we obtained a vector representation (atomic vector) of 87 atoms by singular value decomposition (SVD) of the atomic environment matrix. Then, the obtained atom vector was used to implement the coded representation of the superconductors in the order of the atoms in the chemical formula of the superconductor. The experimental results of the HNN model trained with 12,413 superconductors were compared with three benchmark neural network algorithms and multiple machine learning algorithms using two commonly used material characterization methods. The experimental results show that the HNN method proposed in this paper can eectively extract the characteristic relationships between the atoms of superconductors, and it has high accuracy in predicting the Tc

    Cardioprotective Effect of Betulinic Acid on Myocardial Ischemia Reperfusion Injury in Rats

    Get PDF
    Objectives. This study aims to investigate the effect of betulinic acid (BA) on myocardial ischemia reperfusion/injury in an open-chest anesthetized rat model. Methods. The model was induced by 30 minutes left anterior descending occlusion followed by 2 hours reperfusion. There are six groups in our present study: sham operation group, ischemia/reperfusion group, low-dosage BA group, medium-dosage BA group, high-dosage BA group, and fosinopril sodium group. Rats in the latter four groups were administrated with BA (50, 100, and 200 mg/kg, i.g.) or fosinopril sodium (10 mg/kg, i.g.) once a day for 7 days before operation, respectively. Rats in the former two groups were given the same volume of vehicle (0.5% CMC-Na, i.g.). During the operation, cardiac function was continuously monitored. Serum LDH and CK were measured with colorimetric assays. The expression of Bcl-2 and Bax and the apoptosis of cardiomyocytes were investigated with western blot and TUNEL assay, respectively. Results. Pretreatment with BA improved cardiac function and attenuated LDH and CK activities compared with IR group. Further investigation demonstrated that the expression of Bcl-2 and Bax and TUNEL assay was in line with the above results. Conclusion. BA may reduce the release of LDH and CK, prevent cardiomyocytes apoptosis, and eventually alleviate the extent of the myocardial ischemia/reperfusion injury

    Endurance exercise accelerates myocardial tissue oxygenation recovery and reduces ischemia reperfusion injury in mice

    Get PDF
    Exercise training offers cardioprotection against ischemia and reperfusion (I/R) injury. However, few essential signals have been identified to underscore the protection from injury. In the present study, we hypothesized that exercise-induced acceleration of myocardial tissue oxygenation recovery contributes to this protection. C57BL/6 mice (4 weeks old) were trained on treadmills for 45 min/day at a treading rate of 15 m/min for 8 weeks. At the end of 8-week exercise training, mice underwent 30-min left anterior descending coronary artery occlusion followed by 60-min or 24-h reperfusion. Electron paramagnetic resonance oximetry was performed to measure myocardial tissue oxygenation. Western immunoblotting analyses, gene transfection, and myography were examined. The oximetry study demonstrated that exercise markedly shortened myocardial tissue oxygenation recovery time following reperfusion. Exercise training up-regulated Kir6.1 protein expression (a subunit of ATP-sensitive K(+)channel on vascular smooth muscle cells, VSMC sarc-K(ATP)) and protected the heart from I/R injury. In vivo gene transfer of dominant negative Kir6.1AAA prolonged the recovery time and enlarged infarct size. In addition, transfection of Kir6.1AAA increased the stiffness and reduced the relaxation capacity in the vasculature. Together, our study demonstrated that exercise training up-regulated Kir6.1, improved tissue oxygenation recovery, and protected the heart against I/R injury. This exercise-induced cardioprotective mechanism may provide a potential therapeutic intervention targeting VSMC sarc-K(ATP) channels and reperfusion recovery

    More is less: Effect of ICF-based early progressive mobilization on severe aneurysmal subarachnoid hemorrhage in the NICU

    Get PDF
    IntroductionAneurysmal subarachnoid hemorrhage (aSAH) is a type of stroke that occurs due to a ruptured intracranial aneurysm. Although advanced therapies have been applied to treat aSAH, patients still suffer from functional impairment leading to prolonged stays in the NICU. The effect of early progressive mobilization as an intervention implemented in the ICU setting for critically ill patients remains unclear.MethodsThis retrospective study evaluated ICF-based early progressive mobilization's validity, safety, and feasibility in severe aSAH patients. Sixty-eight patients with aSAH with Hunt-Hess grades III-IV were included. They were divided into two groups—progressive mobilization and passive movement. Patients in the progressive mobilization group received progressive ICF-based mobilization intervention, and those in the passive movement group received passive joint movement training. The incidence of pneumonia, duration of mechanical ventilation, length of NICU stay, and incidence of deep vein thrombosis were evaluated for validity. In contrast, the incidence of cerebral vasospasm, abnormally high ICP, and other safety events were assessed for safety. We also described the feasibility of the early mobilization initiation time and the rate of participation at each level for patients in the progressive mobilization group.ResultsThe results showed that the incidence of pneumonia, duration of mechanical ventilation, and length of NICU stay were significantly lower among patients in the progressive mobilization group than in the passive movement group (P = 0.031, P = 0.004, P = 0.012), but the incidence of deep vein thrombosis did not significantly differ between the two groups. Regarding safety, patients in the progressive mobilization group had a lower incidence of cerebral vasospasm than those in the passive movement group. Considering the effect of an external ventricular drain on cerebral vasospasm (P = 0.015), we further analyzed those patients in the progressive mobilization group who had a lower incidence of cerebral vasospasm in patients who did not have an external ventricular drain (P = 0.011). Although we found 2 events of abnormally increased intracranial pressure in the progressive mobilization group, there was no abnormal decrease in cerebral perfusion pressure in the 2 events. In addition, among other safety events, there was no difference in the occurrence of adverse events between the two groups (P = 0.073), but the number of potential adverse events was higher in the progressive mobilization group (P = 0.001). Regarding feasibility, patients in the progressive mobilization group were commonly initiated 72 h after admission to the NICU, and 47.06% were in the third level of the mobilization protocol.DiscussionWe conclude that the ICF-based early progressive mobilization protocol is an effective and feasible intervention tool. For validity, more mobilization interventions might lead to less pneumonia, duration of mechanical ventilation and length of stay for patients with severe aSAH in the NICU, Moreover, it is necessary to pay attention over potential adverse events (especially line problems), although we did not find serious safety events

    Quantitative characterization of the disturbance of groundwater system in typical coal seam mining in contiguous area of Inner Mongolia and Shaanxi

    Get PDF
    High-intensity mining of coal mines in ecologically fragile areas disturbs the groundwater system and causes water resources loss. The typical shallow and deep mining mines in the middle section of the Yellow River basin are selected as the research objects, and the development height of the water-conducting fracture zone in the shallow composite coal seam mining and the deep single coal seam mining is comprehensively determined by using the theoretical analysis, numerical simulation of overburden damage and the underground measurement, and the comparison with surrounding mines with similar conditions. According to the spatial location relationship between the water-conducting fracture zone and the main roof aquifer/aquiclude, the water filling model of Zhiluo Formation - Zhidan Group aquifer in shallow coal seam mining and that of Zhiluo Formation aquifer in deep coal seam mining are divided; By generalizing the groundwater flow system of different aquifer water filling modes, the three-dimensional unsteady flow mathematical model of groundwater in typical coal seam mining is constructed, and the numerical model of groundwater flow in two working conditions is established by using Visual Modflow software. The quantitative prediction of groundwater flow field and water resource loss in the mining of the continuous working face is carried out, and the results show that the groundwater from Zhidan Group and Zhiluo Formation aquifers in the disturbed aquifer is converging towards the goaf at the same time, the flow field also gradually recovers with the formation of the secondary stable structure of the roof after mining. Around the goaf, the groundwater flow field shows a local high hydraulic gradient phenomenon; In addition, the average annual water loss of the two coal mining conditions in the continuous period is more than 2 million m3 and 7.3 million m3 respectively. The research results provide a reference for the advanced fine control of regional water resources loss and the utilization of mine water resources

    Genome-Wide Linkage Mapping Reveals QTLs for Seed Vigor-Related Traits Under Artificial Aging in Common Wheat (Triticum aestivum)

    Get PDF
    Long-term storage of seeds leads to lose seed vigor with slow and non-uniform germination. Time, rate, homogeneity, and synchrony are important aspects during the dynamic germination process to assess seed viability after storage. The aim of this study is to identify quantitative trait loci (QTLs) using a high-density genetic linkage map of common wheat (Triticum aestivum) for seed vigor-related traits under artificial aging. Two hundred and forty-six recombinant inbred lines derived from the cross between Zhou 8425B and Chinese Spring were evaluated for seed storability. Ninety-six QTLs were detected on all wheat chromosomes except 2B, 4D, 6D, and 7D, explaining 2.9–19.4% of the phenotypic variance. These QTLs were clustered into 17 QTL-rich regions on chromosomes 1AL, 2DS, 3AS (3), 3BS, 3BL (2), 3DL, 4AS, 4AL (3), 5AS, 5DS, 6BL, and 7AL, exhibiting pleiotropic effects. Moreover, 10 stable QTLs were identified on chromosomes 2D, 3D, 4A, and 6B (QaMGT.cas-2DS.2, QaMGR.cas-2DS.2, QaFCGR.cas-2DS.2, QaGI.cas-3DL, QaGR.cas-3DL, QaFCGR.cas-3DL, QaMGT.cas-4AS, QaMGR.cas-4AS, QaZ.cas-4AS, and QaGR.cas-6BL.2). Our results indicate that one of the stable QTL-rich regions on chromosome 2D flanked by IWB21991 and IWB11197 in the position from 46 to 51 cM, presenting as a pleiotropic locus strongly impacting seed vigor-related traits under artificial aging. These new QTLs and tightly linked SNP markers may provide new valuable information and could serve as targets for fine mapping or markers assisted breeding

    Comparative analysis of liver transcriptome reveals adaptive responses to hypoxia environmental condition in Tibetan chicken

    Get PDF
    Objective Tibetan chickens, which have unique adaptations to extreme high-altitude environments, exhibit phenotypic and physiological characteristics that are distinct from those of lowland chickens. However, the mechanisms underlying hypoxic adaptation in the liver of chickens remain unknown. Methods RNA-sequencing (RNA-Seq) technology was used to assess the differentially expressed genes (DEGs) involved in hypoxia adaptation in highland chickens (native Tibetan chicken [HT]) and lowland chickens (Langshan chicken [LS], Beijing You chicken [BJ], Qingyuan Partridge chicken [QY], and Chahua chicken [CH]). Results A total of 352 co-DEGs were specifically screened between HT and four native lowland chicken breeds. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses indicated that these co-DEGs were widely involved in lipid metabolism processes, such as the peroxisome proliferator-activated receptors (PPAR) signaling pathway, fatty acid degradation, fatty acid metabolism and fatty acid biosynthesis. To further determine the relationship from the 352 co-DEGs, protein-protein interaction network was carried out and identified eight genes (ACSL1, CPT1A, ACOX1, PPARC1A, SCD, ACSBG2, ACACA, and FASN) as the potential regulating genes that are responsible for the altitude difference between the HT and other four lowland chicken breeds. Conclusion This study provides novel insights into the molecular mechanisms regulating hypoxia adaptation via lipid metabolism in Tibetan chickens and other highland animals

    GPML: an XML-based standard for the interchange of genetic programming trees

    Get PDF
    We propose a Genetic Programming Markup Language (GPML), an XML based standard for the interchange of genetic programming trees, and outline the benefits such a format would bring in allowing the deployment of trained genetic programming (GP) models in applications as well as the subsidiary benefit of allowing GP researchers to directly share trained trees. We present a formal definition of this standard and describe details of an implementation. In addition, we present a case study where GPML is used to implement a model predictive controller for the control of a building heating plant
    • …
    corecore