1,092 research outputs found

    Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling High‐Rate Lithium Cycling

    Full text link
    Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm−2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries.By removing the impurity layer on the surface of the lithium metal, Li–garnet electrolytes are demonstrated to well wet the lithium metal, rendering a Li/garnet interfacial impedance of 6.95 Ω cm2, stable galvanostatic cycling for 950 h, and a current density as high as 13.3 mA cm−2 without showing any sign of short circuiting at room temperature.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154451/1/adfm201906189-sup-0001-SuppMat.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154451/2/adfm201906189.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154451/3/adfm201906189_am.pd

    Chiral Separation of D,L-Mandelic Acid Using An Enantioselective Membrane Formed by Polycondensation of β-Cyclodextrin with 1,6-Diisocyanatohexane on A Polysulfone Membrane

    Get PDF
    An enantioselective composite membrane was prepared by polycondensation between β-cyclodextrin (β-CD) on a polysulfone support (PS) and a heptane solution of 1,6-diisocyanatohexane (1,6-DCH). The flux and permselective properties of the composite membrane were studied using an aqueous solution of D,L-mandelic acid as the feed solution. The influences of a number of parameters, such as the air-drying time of the β-CD solution on PS, the time of polymerization, the operating pressure and the feed concentration of the racemate, were studied. Chemical characterization was carried out using Fourier transform infrared spectroscopy and the top surface/cross-section was analyzed by scanning electron microscopy. The results showed that when using the enantioselective composite membrane for the optical resolution of the D,L-mandelic acid racemic mixture, an enantiomeric excess of over 85% could be obtained. The paper thus details, for the first time, how a poly(β-CD crosslinked with 1,6-DCH)/PS composite membrane can be used as an optical resolution membrane material to isolate the optical isomers of D,L-mandelic acid

    Coupling between NMDA Receptor and Acid-Sensing Ion Channel Contributes to Ischemic Neuronal Death

    Get PDF
    SummaryAcid-sensing ion channels (ASICs) composed of ASIC1a subunit exhibit a high Ca2+ permeability and play important roles in synaptic plasticity and acid-induced cell death. Here, we show that ischemia enhances ASIC currents through the phosphorylation at Ser478 and Ser479 of ASIC1a, leading to exacerbated ischemic cell death. The phosphorylation is catalyzed by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, as a result of activation of NR2B-containing N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) during ischemia. Furthermore, NR2B-specific antagonist, CaMKII inhibitor, or overexpression of mutated form of ASIC1a with Ser478 or Ser479 replaced by alanine (ASIC1a-S478A, ASIC1a-S479A) in cultured hippocampal neurons prevented ischemia-induced enhancement of ASIC currents, cytoplasmic Ca2+ elevation, as well as neuronal death. Thus, NMDAR-CaMKII cascade is functionally coupled to ASICs and contributes to acidotoxicity during ischemia. Specific blockade of NMDAR/CaMKII-ASIC coupling may reduce neuronal death after ischemia and other pathological conditions involving excessive glutamate release and acidosis

    Geostatistical mapping and quantitative source apportionment of potentially toxic elements in top- and sub-soils: A case of suburban area in Beijing, China

    Get PDF
    Abstract The risk assessment and source identification for potentially toxic elements (PTEs) in soils, particularly agricultural soils from megacities, are significant for environmental protection and pollution control. In this study, an intensive sampling (4127 topsoil samples and 994 subsoil samples) was conducted in the Shunyi District, Beijing, which is a suburban area with extensive cropland cover and has been impacted by the megacity over several decades. Concentrations and distributions of 8 PTEs, including V, Cr, Ni, As, Cd, Zn, Pb and Hg, were determined, and their possible sources were quantitatively assessed by principal component analysis (PCA), redundancy analysis (RDA), positive matrix factorization (PMF) analysis, and anthropogenic contribution ratio method. Among 8 PTEs, Zn, V and Cr exhibited significantly high concentrations in soils, with means of 68.29, 68.19 and 52.13 mg/kg, respectively, followed by Pb (23.84 mg/kg), Ni (22.91 mg/kg), As (8.30 mg/kg), Cd (0.15 mg/kg) and Hg (0.05 mg/kg). RDA and PCA demonstrated that the rock weathering was a significant source of V, Cr, Ni and As, and the local emissions and atmospheric deposition respectively contributed most of Cd, Zn and Pb, and of Hg in soils. This source category was confirmed the spatial variations of anthropogenic contribution ratios to individual PTEs. PMF results showed that the local emissions contributed 96.3% of Cd, 44.4% of Zn and 32.0% of Pb in soils, and the atmospheric source carrying urban pollutants amounted to 78.7–80.2% of Hg. In this case, several effective analysis methods have been successfully applied to quantify the impact of a megacity to PTEs in suburban soils. These results improve understanding of the contamination status of PTEs in suburban soils from Beijing megacity, and provide basis for policymaker regarding environmental protection and pollution control

    Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing.

    Get PDF
    A versatile photonic crystal sensing motif based on a twodimensional (2D) inverse opal monolayer of stimuli-responsive polyelectrolyte gel with tunable optical properties is reported. The photonic membrane shows prompt response to pH and can be readily read out from either its optical spectra or interference colours

    Dosage Compensation of the X Chromosomes in Bovine Germline, Early Embryos, and Somatic Tissues

    Get PDF
    Dosage compensation of the mammalian X chromosome (X) was proposed by Susumu Ohno as a mechanism wherein the inactivation of one X in females would lead to doubling the expression of the other. This would resolve the dosage imbalance between eutherian females (XX) versus male (XY) and between a single active X versus autosome pairs (A). Expression ratio of X- and A-linked genes has been relatively well studied in humans and mice, despite controversial results over the existence of upregulation of X-linked genes. Here we report the first comprehensive test of Ohno’s hypothesis in bovine preattachment embryos, germline, and somatic tissues. Overall an incomplete dosage compensation (0.5 \u3c X:A \u3c 1) of expressed genes and an excess X dosage compensation (X:A \u3e 1) of ubiquitously expressed “dosage-sensitive” genes were seen. No significant differences in X:A ratios were observed between bovine female and male somatic tissues, further supporting Ohno’s hypothesis. Interestingly, preimplantation embryos manifested a unique pattern of X dosage compensation dynamics. Specifically, X dosage decreased after fertilization, indicating that the sperm brings in an inactive X to the matured oocyte. Subsequently, the activation of the bovine embryonic genome enhanced expression of X-linked genes and increased the X dosage. As a result, an excess compensation was exhibited from the 8-cell stage to the compact morula stage. The X dosage peaked at the 16-cell stage and stabilized after the blastocyst stage. Together, our findings confirm Ohno’s hypothesis of X dosage compensation in the bovine and extend it by showing incomplete and over-compensation for expressed and “dosage-sensitive” genes, respectively

    The addition of a pH-sensitive gel improves microemulsion stability for the targeted removal of colonic ammonia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We prepared an oral W/O microemulsion for the removal of colonic ammonia (ME-RCA). The effect of this microemulsion was influenced by the digestion process in the gastrointestinal tract. In this paper, we aim to show that stability was improved by using a microemulsion-based gel for the removal of colonic ammonia (MBG-RCA).</p> <p>Methods</p> <p>MBG-RCA was prepared by adding sodium alginate to the ME-RCA. MBG-RCA and ME-RCA were passed through a simulated gastrointestinal environment, and the amount of colonic ammonia present was then determined by titration with a standard solution of hydrochloric acid. The pH of the gastrointestinal fluid was measured using a pH test paper and the size and form of the microemulsions were examined under the microscope. 18 healthy rats were randomly divided into three groups, fasted for 24 hours and allowed to drink normally. Three-way pipes were placed at the gastroduodenal junction in Group I, and at the terminal ileum in Group II. After the intragastric administration of ME-RCA, the stomach contents in Group I, the effluent from the terminal ileum in Group II and discharge from the anus in Group III were collected. The pH values of the gastrointestinal juice were measured by the pH test paper and those of the colon were determined by a universal indicator. These animal experiments were also used to test the effect of MBG-RCA.</p> <p>Results</p> <p>MBG-RCA showed a better removal rate of artificial colonic ammonia than ME-RCA (P < 0.05). The decrease in pH value of the artificial small intestinal fluid due to ME-RCA did not occur when MBG-RCA was used. In the simulated gastrointestinal process, MBG-RCA maintained greater stability and released the emulsion (ME-RCA) in the colonic fluid. In the gastrointestinal tract of normal SD rats, ME-RCA decreased in size and lost its stable form after entering the small intestine, while MBG-RCA remained stable and intact emulsion-drops were observed from the anus. Neither substance had any effect on the pH of the stomach or colon of normal rats (partly because normal rats were fasted for 24 hours and allowed to drink normally, which resulted in a low level of ammonia production in the colon). Unlike ME-RCA, MBG-RCA did not reduce the pH of the small intestine.</p> <p>Conclusions</p> <p>MBG-RCA was more stable in the gastrointestinal tract and more effective at removing colonic ammonia when a higher concentration of ammonia was present. This made it possible to achieve the targeted removal of colonic ammonia and is a promising method to prevent hepatic encephalopathy (HE) in future studies.</p
    corecore