13 research outputs found

    Discovery of N-arylsulfonyl-3-acylindole benzoyl hydrazone derivatives as anti-HIV-1 agents

    Get PDF
    The discovery and development of novel inhibitors with activity against variants of human immunodeficiency virus type 1 (HIV-1) is pivotal for overcoming treatment failure. As our ongoing work on research of anti-HIV-1 inhibitors, 32 N-arylsulfonyl-3-acylindole benzoyl hydrazone derivatives were prepared by introduction of the hydrazone fragments on the N-arylsulfonyl-3-acylindolyl skeleton and preliminarily screened in vitro as HIV-1 inhibitors for the first time. Among of all the reported analogues, eight compounds exhibited significant anti-HIV-1 activity, especially N-(3-nitro)phenylsulfonyl-3- acetylindole benzoyl hydrazone (18) and N-(3-nitro)phenylsulfonyl-3-acetyl-6-methylindole benzoyl hydrazone (23) displayed the most potent anti-HIV-1 activity with EC50 values of 0.26 and 0.31 μg/mL, and TI values of >769.23 and >645.16, respectively. It is noteworthy that introduction of R3 as the methyl group and R2 as the hydrogen group could result in more potent compounds. This suggested that introduction of R3 as the methyl group could be taken into account for further preparation of these kinds of compounds as anti-HIV-1 agents

    Discovery of N-arylsulfonyl-3-acylindole benzoyl hydrazone derivatives as anti-HIV-1 agents

    Get PDF
    The discovery and development of novel inhibitors with activity against variants of human immunodeficiency virus type 1 (HIV-1) is pivotal for overcoming treatment failure. As our ongoing work on research of anti-HIV-1 inhibitors, 32 N-arylsulfonyl-3-acylindole benzoyl hydrazone derivatives were prepared by introduction of the hydrazone fragments on the N-arylsulfonyl-3-acylindolyl skeleton and preliminarily screened in vitro as HIV-1 inhibitors for the first time. Among of all the reported analogues, eight compounds exhibited significant anti-HIV-1 activity, especially N-(3-nitro)phenylsulfonyl-3-acetylindole benzoyl hydrazone (18) and N-(3-nitro)phenylsulfonyl-3-acetyl-6-methylindole benzoyl hydrazone (23) displayed the most potent anti-HIV-1 activity with EC50 values of 0.26 and 0.31 μg/mL, and TI values of >769.23 and >645.16, respectively. It is noteworthy that introduction of R3 as the methyl group and R2 as the hydrogen group could result in more potent compounds. This suggested that introduction of R3 as the methyl group could be taken into account for further preparation of these kinds of compounds as anti-HIV-1 agents

    Synthesis and in vitro anti-HIV-1 evaluation of some N-arylsulfonyl-3-formylindoles

    Get PDF
    As our ongoing work on research of anti-HIV-1 inhibitors, fifteen N-arylsulfonyl-3-formylindoles (3a-o) were designed and prepared through two step synthetic route. Firstly, 3-formylindoles (2a-c) were synthesized via the Vilsmeier-Haack reaction. Subsequently, treatment of 2a-c with the appropriate arylsulfonyl chlorides led to the corresponding target compounds in excellent yields. All analogues were also preliminary evaluated in vitro for their inhibitory activity against HIV-1 replication. Among of all the reported analogues, three compounds 3c, 3g and 3i displayed significant anti-HIV-1 activity, with EC50 values of 9.57, 11.04 and 5.02 μM, and TI values of 31.89, 13.79 and 81.69, respectively. N-m-nitrophenylsulfonyl-3-formylindole (3c) and N-m-nitrophenylsulfonyl-6-methyl-3-formylindole (3i) especially exhibited the best promising anti-HIV-1 activity. In addition, it demonstrated that insertion of a methyl group at the C-6 position of the indolyl ring and a nitro group at the meta position of the arylsulfonyl ring, as in compound 3i, resulted in both low cytotoxicity (CC50= 410.41 μM) and good antiviral activity

    Design and Synthesis of Novel N-Arylsulfonyl-3-(2-yl-ethanone)-6-methylindole Derivatives as Inhibitors of HIV-1 Replication

    No full text
    Seven novel N-arylsulfonyl-3-(2-yl-ethanone)-6-methylindole derivatives 4a–f and 6 were readily synthesized and have been identified as inhibitors of human immunodeficiency virus type-1 (HIV-1) replication. Initial biological studies indicated that among these derivatives, N-(p-ethyl)phenylsulfonyl-3-[2-morpholinoethanone]-6-methylindole (4f) and N-(p-ethyl)phenylsulfonyl-3-[2-(5-phenyl-1,3,4-oxadiazole-2-yl-thio)ethanone]-6-methylindole (6) showed the most promising activity against HIV-1 replication. The effective concentration (EC50) and therapeutic index (TI) values of 4f and 6 were 9.42/4.62 μM, and >49.77/66.95, respectively. The cytotoxicity of these compounds has also been assessed. No significant cytotoxicities were found for any of these compounds

    Biofumigation by Mustard Plants as an Application for Controlling Postharvest Gray Mold in Apple Fruits

    No full text
    Gray mold caused by Botrytis cinerea is a critical disease that results in severe postharvest losses for the apple industry. In recent years, biological control has become an increasingly effective approach for controlling postharvest diseases in fruits. Brassica plants contain abundant natural compounds with known antimicrobial activity against numerous plant pathogens. In this study, a large-scale screening of 90 mustard cultivars was conducted to evaluate their biofumigation effects against B. cinerea. Among these, one mustard cultivar named Dilong-1, displayed the highest inhibitory effect against B. cinerea, and was able to completely inhibit mycelial growth. Further investigations showed that fumigation with Dilong-1 inhibited mycelial growth, sporulation, and spore germination of B. cinerea in vitro. In addition, fumigation using Dilong-1 showed a wide antifungal spectrum, including other fruit postharvest pathogens such as Phytophthora litchii. Furthermore, apple gray mold disease severity was significantly reduced by biofumigation using Dilong-1. Importantly, fumigation with Dilong-1 did not negatively impact final apple qualities, including weight loss, firmness, and total soluble solids. These results suggested that Dilong-1 significantly inhibited gray mold decay caused by B. cinerea without affecting the quality of apple fruits. In conclusion, biological fumigation of apple fruits with the mustard cultivar Dilong-1 is a promising eco-friendly approach for controlling apple gray mold during storage and shipment

    Rapid and simple detection of Phytophthora cactorum in strawberry using a coupled recombinase polymerase amplification–lateral flow strip assay

    No full text
    Abstract Phytophthora cactorum is a devastating pathogen that infects a wide range of plants and causes Phytophthora rot disease, which has resulted in great economic losses in crop production. Therefore, the rapid and practicable detection of P. cactorum is important for disease monitoring and forecasting. In this study, we developed a lateral flow recombinase polymerase amplification (LF-RPA) assay for the sensitive visual detection of P. cactorum. Specific primers for P. cactorum were designed based on the ras-related protein gene Ypt1; all 10 P. cactorum isolates yielded positive detection results, whereas no cross-reaction occurred in related oomycete or fungal species. The detection limit for the LF-RPA assay was 100 fg of genomic DNA under optimized conditions. Combined with a simplified alkaline lysis method for plant DNA extraction, the LF-RPA assay successfully detected P. cactorum in naturally diseased strawberry samples without specialized equipment within 40 min. Thus, the LF-RPA assay developed in this study is a rapid, simple, and accurate method for the detection of P. cactorum, with the potential for further application in resource-limited laboratories

    Conserved RXLR Effector Genes of Phytophthora infestans Expressed at the Early Stage of Potato Infection Are Suppressive to Host Defense

    No full text
    Late blight has been the most devastating potato disease worldwide. The causal agent, Phytophthora infestans, is notorious for its capability to rapidly overcome host resistance. Changes in the expression pattern and the encoded protein sequences of effector genes in the pathogen are responsible for the loss of host resistance. Among numerous effector genes, the class of RXLR effector genes is well-known in mediating host genotype-specific resistance. We therefore performed deep sequencing of five genetically diverse P. infestans strains using in planta materials infected with zoospores (12 h post inoculation) and focused on the identification of RXLR effector genes that are conserved in coding sequences, are highly expressed in early stages of plant infection, and have defense suppression activities. In all, 245 RXLR effector genes were expressed in five transcriptomes, with 108 being co-expressed in all five strains, 47 of them comparatively highly expressed. Taking sequence polymorphism into consideration, 18 candidate core RXLR effectors that were conserved in sequence and with higher in planta expression levels were selected for further study. Agrobacterium tumefaciens-mediated transient expression of the selected effector genes in Nicotiana benthamiana and potato demonstrated their potential virulence function, as shown by suppression of PAMP-triggered immunity (PTI) or/and effector-triggered immunity (ETI). The identified collection of core RXLR effectors will be useful in the search for potential durable late blight resistance genes. Analysis of 10 known Avr RXLR genes revealed that the resistance genes R2, Rpi-blb2, Rpi-vnt1, Rpi-Smira1, and Rpi-Smira2 may be effective in potato cultivars. Analysis of 8 SFI (Suppressor of early Flg22-induced Immune response) RXLR effector genes showed that SFI2, SFI3, and SFI4 were highly expressed in all examined strains, suggesting their potentially important function in early stages of pathogen infection
    corecore