28,065 research outputs found
The Implementation of Flipped Classroom in Efl Class: a Taiwan Case Study
This article reports on a case study designed to examine the implementation of flipped classroom in the EFL classroom in Taiwan. In addition, students' perception of flipped classroom was also investigated. Sixty-one senior high school students participated in this study; data were gathered from students' English midterm exam score and questionnaire. The data then were quantitatively analyzed by using T-test and descriptive statistics. The results show that students' English proficiency in flipped classroom was not significantly different with students in traditional classroom. However, the results reveal that students' perception of flipped classroom were generally favorable. Students' contended that flipped classroom enhanced their motivation in learning English, as they liked the self-pace through the course and they stated that flipped classroom gave them more class time to practice English. The results presented here may facilitate improvements in the implementation of flipped classroom in EFL class. Furthermore, suggestions for further research are also presented
Topology of Entanglement in Multipartite States with Translational Invariance
The topology of entanglement in multipartite states with translational
invariance is discussed in this article. Two global features are foundby which
one can distinguish distinct states. These are the cyclic unit and the
quantised geometric phase. Furthermore the topology is indicated by the
fractional spin. Finally a scheme is presented for preparation of these types
of states in spin chain systems, in which the degeneracy of the energy levels
characterises the robustness of the states with translational invariance.Comment: major revision. accepted by EPJ
Recommended from our members
Thermal stress-induced charge and structure heterogeneity in emerging cathode materials
Nickel-rich layered oxide cathode materials are attractive near-term candidates for boosting the energy density of next generation lithium-ion batteries. The practical implementation of these materials is, however, hindered by unsatisfactory capacity retention, poor thermal stability, and oxygen release as a consequence of structural decomposition, which may have serious safety consequences. The undesired side reactions are often exothermic, causing complicated electro-chemo-mechanical interplay at elevated temperatures. In this work, we explore the effects of thermal exposure on chemically delithiated LiNi0.8Mn0.1Co0.1O2 (NMC-811) at a practical state-of-charge (50% Li content) and an over-charged state (25% Li content). A systematic study using a suite of advanced synchrotron radiation characterization tools reveals the dynamics of thermal behavior of the charged NMC-811, which involves sophisticated structural and chemical evolution; e.g. lattice phase transformation, transition metal (TM) cation migration and valence change, and lithium redistribution. These intertwined processes exhibit a complex 3D spatial heterogeneity and, collectively, form a valence state gradient throughout the particles. Our study sheds light on the response of NMC-811 to elevated temperature and highlights the importance of the cathode's thermal robustness for battery performance and safety
Numerical Study on Indoor Wideband Channel Characteristics with Different Internal Wall
Effects of material and configuration of the internal wall on the performance of wideband channel are investigated by using the Finite Difference Time-Domain (FDTD) method. The indoor wideband channel characteristics, such as the path-loss, Root-Mean-Square (RMS) delay spread and number of the multipath components (MPCs), are presented. The simulated results demonstrate that the path-loss and MPCs are affected by the permittivity, dielectric loss tangent and thickness of the internal wall, while the RMS delay spread is almost not relevant with the dielectric permittivity. Furthermore, the comparison of simulated result with the measured one in a simple scenario has validated the simulation study
The Effect of Pre-fermentative Freezing Treatment on the Sensory Quality of ‘Meili’ Rosé Wine
In this study, the effect of a pre-fermentative freezing treatment on quality attributes of ‘Meili’ rosé wine was assessed. Prior to fermentation, ‘Meili’ grapes (berries and must) were subjected to a freezing treatment considering factors of freezing temperatures, freezing time, and thawing method. Colour-related indices were measured by spectral methods. Wine aroma characteristics and sensory attributes were assessed by trained panellists. The results revealed that lower freezing temperature and longer freezing time had positive effects on wine quality attributes. The treatment of frozen berries might help extract colour-related compounds. Microwave thawing improved wine colour, but decreased taste quality. In the work, the MF-10°C/6 h treatment (microwave-thawed berries that had been frozen at -10°C for 6 h) contributed to the best colour characteristics, whereas the NP-20°C/4 h treatment (naturally-thawed must that had been frozen at -20°C for 4 h) contributed to the best taste attributes
Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning
This work is partially supported by grants from the
National Natural Science Foundation of China under
contract No. 61390515, No. U1611461, and No.
61425025, and the National Basic Research Program
of China under Grant No. 2015CB351806
- …