60 research outputs found

    A robust fault detection method of rolling bearings using modulation signal bispectrum analysis

    Get PDF
    Envelope analysis is a widely used method for bearing fault detection. To obtain high detection accuracy, it is critical to select an optimal narrowband for envelope demodulation. Fast Kurtogram is an effective method for optimal narrowband selection. However, fast Kurtogram is not sufficiently robust because it is very sensitive to random noise and large aperiodic impulses which normally exist in practical application. To achieve the purpose of denoising and frequency band optimization, this paper proposes a new fault detector based on modulation signal bispectrum analysis (MSB) for bearing fault detection. As MSB results highlight the modulation effects by suppressing stationary random noise and discrete aperiodic impulses, the detector developed using high magnitudes of MSB can provide optimal frequency bands for fault detection straightforward. Performance evaluation results using both simulated data and experimental data show that the proposed method produces more effective and robust detection results for different types of bearing faults, compared with optimal envelope analysis using fast Kurtogram

    A Novel Method to Improve the Resolution of Envelope Spectrum for Bearing Fault Diagnosis Based on a Wireless Sensor Node

    Get PDF
    In this paper, an accurate envelope analysis algorithm is developed for a wireless sensor node. Since envelope signals employed in condition monitoring often have narrow frequency bandwidth, the proposed algorithm down-samples and cascades the analyzed envelope signals to construct a relatively long one. Thus, a relatively higher frequency resolution can be obtained by calculating the spectrum of the cascaded signal. In addition, a 50 % overlapping scheme is applied to avoid the distortions caused by Hilbert transform based envelope calculation. The proposed method is implemented on a wireless sensor node and tested successfully for detecting an outer race fault of a rolling bearing. The results show that the frequency resolution of the envelope spectrum is improved by 8 times while the data transmission remains at a low rate

    Phosphorus Nutrition and Health: Utilization of Phytaseproducing Bifidobacteria in Food Industry

    Get PDF
    Phosphorus plays vital roles in human health and nutrition. In nature, phosphorus exists as phosphate, either inorganic or organic. The major form of phosphate in plant-derived diets is phytate that cannot be degraded by monogastric animal, as well as humans. Initially, this chapter reviews current research of phosphorus in human nutrition and health. Subsequently, problems of phytate degradation and phosphorus utilization in plant-derived diet are outlined. Next, as the main part, the enzymes of phytase, which catalyze the release of inorganic phosphorus from phytate, are compared, especially those produced by gut microbiota. Meanwhile, how probiotic bifidobacteria can be used for producing phytase and therefore enhance their beneficial effects are discussed. Phytase-producing bifidobacteria can be either isolated rarely in nature or constructed by genetic cloning of phytase genes from other well-characterized enzymes. The combination of bifidobacteria and highly active phytase may improve human health and nutrition especially as supplementary probiotic foods. Therefore, potential application is prospected. Finally, other considerations related to industrial production and usage of phosphorus-enriched additives are remarked. In conclusion, improving and maintaining the phosphorus balance in food by bifidobacteria may be promising for a healthier life

    A new method of accurate broken rotor bar diagnosis based on modulation signal bispectrum analysis of motor current signals

    Get PDF
    Motor current signature analysis (MCSA) has been an effective way of monitoring electrical machines for many years. However, inadequate accuracy in diagnosing incipient broken rotor bars (BRB) has motivated many studies into improving this method. In this paper a modulation signal bispectrum (MSB) analysis is applied to motor currents from different broken bar cases and a new MSB based sideband estimator (MSB-SE) and sideband amplitude estimator are introduced for obtaining the amplitude at (1±2s)fs(1±2s)fs (s is the rotor slip and fsfs is the fundamental supply frequency) with high accuracy. As the MSB-SE has a good performance of noise suppression, the new estimator produces more accurate results in predicting the number of BRB, compared with conventional power spectrum analysis. Moreover, the paper has also developed an improved model for motor current signals under rotor fault conditions and an effective method to decouple the BRB current which interferes with that of speed oscillations associated with BRB. These provide theoretical supports for the new estimators and clarify the issues in using conventional bispectrum analysis

    A new method of vibration analysis for the diagnosis of impeller in a centrifugal pump

    Get PDF
    Centrifugal pumps are widely used in many important industries such as power generation plants, chemical processes and petroleum refiners. The condition monitoring of centrifugal pumps is highly regarded by many researchers and users to minimize unexpected break-downs. Impellers are the core parts of pumps but often appear early damages due to flow cav-itation and erosion. This paper investigates a new approach to monitoring the conditions of impellers using surface vibration with advanced signal analysis. As overall vibration respons-es contain high level of broadband noises due to cavities and turbulences, noise reduction is critical to develop reliable and effective features. However, considering the modulation effect between rotating shaft and blade passing components, a modulation signal bispectrum (MSB) method is employed to extract these deterministic characteristics of modulations, which is different from previous researches in that broadband random sources are often used. Experi-mental results show that the diagnostic features developed by MSB allow impellers with inlet vane damages and exit vane faults to be identified under different operating conditions

    The investigation of motor current signals from a centrifugal pump for fault diagnosis

    Get PDF
    In this paper, motor current signals from electrical control systems, rather than installing additional measurement systems, are characterised for the fault diagnosis of centrifugal pumps. Modulation signal bispectrum (MSB) analysis is applied to reveal the weak nonlinear characteristics of current signals when the pump with different impeller faults operates under a wide range of flow conditions. Experimental results show that two static features including the amplitude at supply frequency and the frequency value of bar-passing frequency can be based on to diagnose impeller defects on exit vane tips and inlet vane tips. In addition, the dynamic parameter of sidebands at vane-passing frequency can also be a good indicator for differentiating between the faults

    An adaptive envelope analysis in a wireless sensor network for bearing fault diagnosis using fast kurtogram algorithm

    Get PDF
    This paper proposes a scheme to improve the performance of applying envelope analysis in a wireless sensor network for bearing fault diagnosis. The fast kurtogram is realized on the host computer for determining an optimum band-pass filter for the envelope analysis that is implemented on the wireless sensor node to extract the low frequency fault information. Therefore, the vibration signal can be monitored over the bandwidth limited wireless sensor network with both intelligence and real-time performance. Test results have proved that the diagnostic information for different bearing faults can be successfully extracted using the optimum band-pass filter

    Misalignment diagnosis of a planetary gearbox based on vibration analysis

    Get PDF
    As a critical power transmission system, planetary gearbox is widely used in many industrial important machines such as wind turbines, aircraft turbine engines, helicopters. Early fault detection and diagnosis of the gearbox will help to prevent unexpected breakdowns of this important equip-ment. Misalignment is one of the major operating problems in the planetary gearbox which may be caused by inadequate system integration, variable operating conditions and differences of elastic deformations in the system. In this paper, the effect of varying degrees of installation misalignment of planetary gearbox are investigated based on vibration measurements using spectrum analysis and modulation signal bispectrum (MSB) analysis. It has shown that the misalignment can be diagnosed in the low frequency range in which the adverse effect due to co-occurrence of amplitude modula-tion and frequency modulation (AM-FM) effect is low compared with the components around meshing frequencies. Moreover, MSB produces a more accurate and reliable diagnosis in that it gives correct indication of the fault severity and location for all operating conditions. In contrast, spectrum can produce correct results for some of the operating conditions. Keywords: Planetary gearbox, Condition Monitoring, Misalignment, Modulation signal bispectrum

    A robust detector for rolling element bearing condition monitoring based on the modulation signal bispectrum,

    Get PDF
    Envelope analysis is a widely used method for rolling element bearing fault detection. To obtain high detection accuracy, it is critical to determine an optimal frequency narrowband for the envelope demodulation. However, many of the schemes which are used for the narrowband selection, such as the kurtogram, can potentially produce poor detection results because they are sensitive to random noise and aperiodic impulses which normally occur in practical applications. To achieve the purposes of denoising and frequency band optimisation, this keynote presents a modulation signal bispectrum (MSB) based robust detector for bearing fault detection. Because of its inherent noise suppression capability, the MSB allows effective suppression of both the stationary random noise and discrete aperiodic noise. The high magnitude features that result from the use of the MSB also enhance the modulation effects of a bearing fault and can be used to provide optimal frequency bands for fault detection. A number of simulated and experimental evaluations show that the proposed method produces more accurate and robust detection results for common bearing faults under a range of representative scenarios

    Diagnosis of Combination Faults in a Planetary Gearbox using a Modulation Signal Bispectrum based Sideband Estimator

    Get PDF
    This paper presents a novel method for diagnosing combination faults in planetary gearboxes. Vibration signals measured on the gearbox housing exhibit complicated characteristics because of multiple modulations of concurrent excitation sources, signal paths and noise. To separate these modulations accurately, a modulation signal bispectrum based sideband estimator (MSB-SE) developed recently is used to achieve a sparse representation for the complicated signal contents, which allows effective enhancement of various sidebands for accurate diagnostic information. Applying the proposed method to diagnose an industrial planetary gearbox which coexists both bearing faults and gear faults shows that the different severities of the faults can be separated reliably under different load conditions, confirming the superior performance of this MSB-SE based diagnosis scheme
    corecore