1,705 research outputs found

    Influence of Functional Groups on Charge Transport in Molecular Junctions

    Get PDF
    Using density functional theory (DFT), we analyze the influence of five classes of functional groups, as exemplified by NO2, OCH3, CH3, CCl3, and I, on the transport properties of a 1,4-benzenedithiolate (BDT) and 1,4-benzenediamine (BDA) molecular junction with gold electrodes. Our analysis demonstrates how ideas from functional group chemistry may be used to engineer a molecule's transport properties, as was shown experimentally and using a semiempirical model for BDA [Nano Lett. 7, 502 (2007)]. In particular, we show that the qualitative change in conductance due to a given functional group can be predicted from its known electronic effect (whether it is pi/sigma donating/withdrawing). However, the influence of functional groups on a molecule's conductance is very weak, as was also found in the BDA experiments. The calculated DFT conductances for the BDA species are five times larger than the experimental values, but good agreement is obtained after correcting for self-interaction and image charge effects.Comment: 6 pages, 3 figures, J. Chem. Phys (in press

    Influence of O2 and N2 on the conductivity of carbon nanotube networks

    Get PDF
    We have performed experiments on single-wall carbon nanotube (SWNT) networks and compared with density-functional theory (DFT) calculations to identify the microscopic origin of the observed sensitivity of the network conductivity to physisorbed O2 and N2. Previous DFT calculations of the transmission function for isolated pristine SWNTs have found physisorbed molecules have little influence on their conductivity. However, by calculating the four-terminal transmission function of crossed SWNT junctions, we show that physisorbed O2 and N2 do affect the junction's conductance. This may be understood as an increase in tunneling probability due to hopping via molecular orbitals. We find the effect is substantially larger for O2 than for N2, and for semiconducting rather than metallic SWNTs junctions, in agreement with experiment.Comment: 6 pages, 5 figures, 1 tabl

    Linear density response function in the projector-augmented wave method: Applications to solids, surfaces, and interfaces

    Full text link
    We present an implementation of the linear density response function within the projector-augmented wave (PAW) method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single-particle eigenstates can be expanded on a real space grid or in atomic orbital basis for increased efficiency. The exchange-correlation kernel is treated at the level of the adiabatic local density approximation (ALDA) and crystal local field effects are included. The calculated static and dynamical dielectric functions of Si, C, SiC, AlP and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of the Mg(0001) surface with plasmon energies deviating by less than 0.2 eV. Finally, we apply the method to study the influence of substrates on the plasmon excitations in graphene. On SiC(0001), the long wavelength π\pi plasmons are significantly damped although their energies remain almost unaltered. On Al(111) the π\pi plasmon is completely quenched due to the coupling to the metal surface plasmon.Comment: 11 pages, 8 figures, articl

    Renormalization of Optical Excitations in Molecules near a Metal Surface

    Full text link
    The lowest electronic excitations of benzene and a set of donor-acceptor molecular complexes are calculated for the gas phase and on the Al(111) surface using the many-body Bethe-Salpeter equation (BSE). The energy of the charge-transfer excitations obtained for the gas phase complexes are found to be around 10% lower than the experimental values. When the molecules are placed outside the surface, the enhanced screening from the metal reduces the exciton binding energies by several eVs and the transition energies by up to 1 eV depending on the size of the transition-generated dipole. As a striking consequence we find that close to the metal surface the optical gap of benzene can exceed its quasiparticle gap. A classical image charge model for the screened Coulomb interaction can account for all these effects which, on the other hand, are completely missed by standard time-dependent density functional theory.Comment: 4 pages, 3 figures; revised versio

    Unraveling the acoustic electron-phonon interaction in graphene

    Get PDF
    Using a first-principles approach we calculate the acoustic electron-phonon couplings in graphene for the transverse (TA) and longitudinal (LA) acoustic phonons. Analytic forms of the coupling matrix elements valid in the long-wavelength limit are found to give an almost quantitative description of the first-principles based matrix elements even at shorter wavelengths. Using the analytic forms of the coupling matrix elements, we study the acoustic phonon-limited carrier mobility for temperatures 0-200 K and high carrier densities of 10^{12}-10^{13} cm^{-2}. We find that the intrinsic effective acoustic deformation potential of graphene is \Xi_eff = 6.8 eV and that the temperature dependence of the mobility \mu ~ T^{-\alpha} increases beyond an \alpha = 4 dependence even in the absence of screening when the full coupling matrix elements are considered. The large disagreement between our calculated deformation potential and those extracted from experimental measurements (18-29 eV) indicates that additional or modified acoustic phonon-scattering mechanisms are at play in experimental situations.Comment: 7 pages, 3 figure

    Graphene on metals: a Van der Waals density functional study

    Full text link
    We use density functional theory (DFT) with a recently developed van der Waals density functional (vdW-DF) to study the adsorption of graphene on Al, Cu, Ag, Au, Pt, Pd, Co and Ni(111) surfaces. In constrast to the local density approximation (LDA) which predicts relatively strong binding for Ni,Co and Pd, the vdW-DF predicts weak binding for all metals and metal-graphene distances in the range 3.40-3.72 \AA. At these distances the graphene bandstructure as calculated with DFT and the many-body G0_0W0_0 method is basically unaffected by the substrate, in particular there is no opening of a band gap at the KK-point.Comment: 4 pages, 3 figure

    Computational design of chemical nanosensors: Transition metal doped single-walled carbon nanotubes

    Get PDF
    We present a general approach to the computational design of nanostructured chemical sensors. The scheme is based on identification and calculation of microscopic descriptors (design parameters) which are used as input to a thermodynamic model to obtain the relevant macroscopic properties. In particular, we consider the functionalization of a (6,6) metallic armchair single-walled carbon nanotube (SWNT) by nine different 3d transition metal (TM) atoms occupying three types of vacancies. For six gas molecules (N_{2}, O_{2}, H_{2}O, CO, NH_{3}, H_{2}S) we calculate the binding energy and change in conductance due to adsorption on each of the 27 TM sites. For a given type of TM functionalization, this allows us to obtain the equilibrium coverage and change in conductance as a function of the partial pressure of the "target" molecule in a background of atmospheric air. Specifically, we show how Ni and Cu doped metallic (6,6) SWNTs may work as effective multifunctional sensors for both CO and NH_{3}. In this way, the scheme presented allows one to obtain macroscopic device characteristics and performance data for nanoscale (in this case SWNT) based devices.Comment: Chapter 7 in "Chemical Sensors: Simulation and Modeling", Ghenadii Korotcenkov (ed.), 47 pages, 22 figures, 10 table

    Dispersive and Covalent Interactions Between Graphene and Metal Surfaces from the Random Phase Approximation

    Get PDF
    We calculate the potential energy surfaces for graphene adsorbed on Cu(111), Ni(111), and Co(0001) using density functional theory and the Random Phase Approximation (RPA). For these adsorption systems covalent and dispersive interactions are equally important and while commonly used approximations for exchange-correlation functionals give inadequate descriptions of either van der Waals or chemical bonds, RPA accounts accurately for both. It is found that the adsorption is a delicate competition between a weak chemisorption minimum close to the surface and a physisorption minimum further from the surface

    An investigation of the formation and line properties of MgH in 3D hydrodynamical model stellar atmospheres

    Get PDF
    Studies of the isotopic composition of magnesium in cool stars have so far relied upon the use of one-dimensional (1D) model atmospheres. Since the isotopic ratios derived are based on asymmetries of optical MgH lines, it is important to test the impact from other effects affecting line asymmetries, like stellar convection. Here, we present a theoretical investigation of the effects of including self-consistent modeling of convection. Using spectral syntheses based on 3D hydrodynamical CO5^5BOLD models of dwarfs (4000KTeff5160K\lesssim T_\mathrm{eff}\lesssim5160K, 4.04.0\leqlog(g)4.5\leq4.5, 3.0[Fe/H]1.0-3.0\leq[\mathrm{Fe/H}]\leq-1.0) and giants (Teff4000T_\mathrm{eff}\sim4000K, log(g)=1.5=1.5, 3.0[Fe/H]1.0-3.0\leq[\mathrm{Fe/H}]\leq-1.0), we perform a detailed analysis comparing 3D and 1D syntheses. We describe the impact on the formation and behavior of MgH lines from using 3D models, and perform a qualitative assessment of the systematics introduced by the use of 1D syntheses. Using 3D model atmospheres significantly affect the strength of the MgH lines, especially in dwarfs, with 1D syntheses requiring an abundance correction of up to +0.69 dex largest for our 5000K models. The corrections are correlated with TeffT_\mathrm{eff} and are also affected by the metallicity. The shape of the strong 24^{24}MgH component in the 3D syntheses is poorly reproduced in 1D. This results in 1D syntheses underestimating 25^{25}MgH by up to 5\sim5 percentage points and overestimating 24^{24}MgH by a similar amount for dwarfs. This discrepancy increases with decreasing metallicity. 26^{26}MgH is recovered relatively well, with the largest difference being 2\sim2 percentage points. The use of 3D for giants has less impact, due to smaller differences in the atmospheric structure and a better reproduction of the line shape in 1D.Comment: 20 pages, 15 figures, accepted for publication in Ap

    Computational Design of Chemical Nanosensors: Metal Doped Carbon Nanotubes

    Get PDF
    We use computational screening to systematically investigate the use of transition metal doped carbon nanotubes for chemical gas sensing. For a set of relevant target molecules (CO, NH3, H2S) and the main components of air (N2, O2, H2O), we calculate the binding energy and change in conductance upon adsorption on a metal atom occupying a vacancy of a (6,6) carbon nanotube. Based on these descriptors, we identify the most promising dopant candidates for detection of a given target molecule. From the fractional coverage of the metal sites in thermal equilibrium with air, we estimate the change in the nanotube resistance per doping site as a function of the target molecule concentration assuming charge transport in the diffusive regime. Our analysis points to Ni-doped nanotubes as candidates for CO sensors working under typical atmospheric conditions
    corecore