5 research outputs found

    Combining TMS and EEG to study cognitive function and cortico-cortico interactions

    No full text
    There has long been an interest in exploring the functional dynamics of the brain's connectivity during cognitive processing, and some recent methodological developments now allow us to test important long-standing hypotheses. This review focuses on the recent development of combined online transcranial magnetic stimulation and electroencephalography (TMS–EEG) and on new studies that have employed this combination to study causal interactions between neural areas involved in perception and cognition

    Cellular adaptation to hypoxia and p53 transcription regulation*

    No full text
    Tumor suppressor p53 is the most frequently mutated gene in human tumors. Meanwhile, under stress conditions, p53 also acts as a transcription factor, regulating the expression of a series of target genes to maintain the integrity of genome. The target genes of p53 can be classified into genes regulating cell cycle arrest, genes involved in apoptosis, and genes inhibiting angiogenesis. p53 protein contains a transactivation domain, a sequence-specific DNA binding domain, a tetramerization domain, a non-specific DNA binding domain that recognizes damaged DNA, and a later identified proline-rich domain. Under stress, p53 proteins accumulate and are activated through two mechanisms. One, involving ataxia telangiectasia-mutated protein (ATM), is that the interaction between p53 and its down-regulation factor murine double minute 2 (MDM2) decreases, leading to p53 phosphorylation on Ser15, as determined by the post-translational mechanism; the other holds that p53 increases and is activated through the binding of ribosomal protein L26 (RPL26) or nucleolin to p53 mRNA 5′ untranslated region (UTR), regulating p53 translation. Under hypoxia, p53 decreases transactivation and increases transrepression. The mutations outside the DNA binding domain of p53 also contribute to tumor progress, so further studies on p53 should also be focused on this direction. The subterranean blind mole rat Spalax in Israel is a good model for hypoxia-adaptation. The p53 of Spalax mutated in residue 172 and residue 207 from arginine to lysine, conferring it the ability to survive hypoxic conditions. This model indicates that p53 acts as a master gene of diversity formation during evolution

    Imaging the Neural Systems for Motivated Behavior and Their Dysfunction in Neuropsychiatric Illness

    No full text

    New Strategies of Screening and Treatment for Sleep Apnea Syndrome.

    No full text

    Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems

    No full text
    corecore