1,652 research outputs found
Reconstructing the global topology of the universe from the cosmic microwave background
If the universe is multiply-connected and sufficiently small, then the last
scattering surface wraps around the universe and intersects itself. Each circle
of intersection appears as two distinct circles on the microwave sky. The
present article shows how to use the matched circles to explicitly reconstruct
the global topology of space.Comment: 6 pages, 2 figures, IOP format. To be published in the proceedings of
the Cleveland Cosmology and Topology Workshop 17-19 Oct 1997. Submitted to
Class. Quant. Gra
Circles in the Sky: Finding Topology with the Microwave Background Radiation
If the universe is finite and smaller than the distance to the surface of
last scatter, then the signature of the topology of the universe is writ large
on the microwave background sky. We show that the microwave background will be
identified at the intersections of the surface of last scattering as seen by
different ``copies'' of the observer. Since the surface of last scattering is a
two-sphere, these intersections will be circles, regardless of the background
geometry or topology. We therefore propose a statistic that is sensitive to all
small, locally homogeneous topologies. Here, small means that the distance to
the surface of last scatter is smaller than the ``topology scale'' of the
universe.Comment: 14 pages, 10 figures, IOP format. This paper is a direct descendant
of gr-qc/9602039. To appear in a special proceedings issue of Class. Quant.
Grav. covering the Cleveland Topology & Cosmology Worksho
Cooperative program for design, fabrication, and testing of graphite/epoxy composite helicopter shafting
The fabrication of UH-1 helicopter tail rotor drive shafts from graphite/epoxy composite materials is discussed. Procedures for eliminating wrinkles caused by lack of precure compaction are described. The development of the adhesive bond between aluminum end couplings and the composite tube is analyzed. Performance tests to validate the superiority of the composite materials are reported
Quadri-tilings of the plane
We introduce {\em quadri-tilings} and show that they are in bijection with
dimer models on a {\em family} of graphs arising from rhombus
tilings. Using two height functions, we interpret a sub-family of all
quadri-tilings, called {\em triangular quadri-tilings}, as an interface model
in dimension 2+2. Assigning "critical" weights to edges of , we prove an
explicit expression, only depending on the local geometry of the graph ,
for the minimal free energy per fundamental domain Gibbs measure; this solves a
conjecture of \cite{Kenyon1}. We also show that when edges of are
asymptotically far apart, the probability of their occurrence only depends on
this set of edges. Finally, we give an expression for a Gibbs measure on the
set of {\em all} triangular quadri-tilings whose marginals are the above Gibbs
measures, and conjecture it to be that of minimal free energy per fundamental
domain.Comment: Revised version, minor changes. 30 pages, 13 figure
New insight into cataract formation -- enhanced stability through mutual attraction
Small-angle neutron scattering experiments and molecular dynamics simulations
combined with an application of concepts from soft matter physics to complex
protein mixtures provide new insight into the stability of eye lens protein
mixtures. Exploring this colloid-protein analogy we demonstrate that weak
attractions between unlike proteins help to maintain lens transparency in an
extremely sensitive and non-monotonic manner. These results not only represent
an important step towards a better understanding of protein condensation
diseases such as cataract formation, but provide general guidelines for tuning
the stability of colloid mixtures, a topic relevant for soft matter physics and
industrial applications.Comment: 4 pages, 4 figures. Accepted for publication on Phys. Rev. Let
Computing CMB Anisotropy in Compact Hyperbolic Spaces
The measurements of CMB anisotropy have opened up a window for probing the
global topology of the universe on length scales comparable to and beyond the
Hubble radius. For compact topologies, the two main effects on the CMB are: (1)
the breaking of statistical isotropy in characteristic patterns determined by
the photon geodesic structure of the manifold and (2) an infrared cutoff in the
power spectrum of perturbations imposed by the finite spatial extent. We
present a completely general scheme using the regularized method of images for
calculating CMB anisotropy in models with nontrivial topology, and apply it to
the computationally challenging compact hyperbolic topologies. This new
technique eliminates the need for the difficult task of spatial eigenmode
decomposition on these spaces. We estimate a Bayesian probability for a
selection of models by confronting the theoretical pixel-pixel temperature
correlation function with the COBE-DMR data. Our results demonstrate that
strong constraints on compactness arise: if the universe is small compared to
the `horizon' size, correlations appear in the maps that are irreconcilable
with the observations. If the universe is of comparable size, the likelihood
function is very dependent upon orientation of the manifold wrt the sky. While
most orientations may be strongly ruled out, it sometimes happens that for a
specific orientation the predicted correlation patterns are preferred over the
conventional infinite models.Comment: 15 pages, LaTeX (IOP style included), 3 color figures (GIF) in
separate files. Minor revision to match the version accepted in Class.
Quantum Grav.: Proc. of Topology and Cosmology, Cleveland, 1997. The paper
can be also downloaded from
http://www.cita.utoronto.ca/~pogosyan/cwru_proc.ps.g
Intra-ejaculate sperm selection in female zebra finches
Among internal fertilizers, typically fewer than 1% sperm survive the journey through the oviduct. Several studies suggest that the sperm reaching the ovum-the 'fertilizing set'-comprise a non-random sub-population, but the characteristics of this group remain unclear. We tested whether oviductal selection in birds results in a morphologically distinct subset of sperm, by exploiting the fact that the fertilizing set are trapped by the perivitelline layer of the ovum. We show that these sperm have remarkably low morphological variation, as well as smaller head size and greater tail length, compared with those inseminated. Our study shows that the morphological composition of sperm-rather than length alone-influences success in reaching the ovum
On the Nature of Andromeda IV
Lying at a projected distance of 40' or 9 kpc from the centre of M31,
Andromeda IV is an enigmatic object first discovered during van den Bergh's
search for dwarf spheroidal companions to M31. Being bluer, more compact and
higher surface brightness than other known dwarf spheroidals, it has been
suggested that And IV is either a relatively old `star cloud' in the outer disk
of M31 or a background dwarf galaxy. We present deep HST WFPC2 observations of
And IV and the surrounding field which, along with ground-based long-slit
spectroscopy and Halpha imagery, are used to decipher the true nature of this
puzzling object. We find compelling evidence that And IV is a background galaxy
seen through the disk of M31. The moderate surface brightness (SB(V)~24), very
blue colour (V-I<~0.6), low current star formation rate (~0.001 solar mass/yr)
and low metallicity (~10% solar) reported here are consistent with And IV being
a small dwarf irregular galaxy, perhaps similar to Local Group dwarfs such as
IC 1613 and Sextans A. Although the distance to And IV is not tightly
constrained with the current dataset, various arguments suggest it lies in the
range 5<~D<~8 Mpc, placing it well outside the confines of the Local Group. It
may be associated with a loose group of galaxies, containing major members UGC
64, IC 1727 and NGC 784. We report an updated position and radial velocity for
And IV.Comment: 26 pages, LaTex with 9 figures (including 6 jpg plates). Accepted for
publication in A
Three-Wave Modulational Stability and Dark Solitons in a Quadratic Nonlinear Waveguide with Grating
We consider continuous-wave (CW) states and dark solitons (DSs) in a system
of two fundamental-frequency (FF) and one second-harmonic (SH) waves in a
planar waveguide with the quadratic nonlinearity, the FF components being
linearly coupled by resonant reflections on the Bragg grating. We demonstrate
that, in contrast with the usual situation in quadratic spatial-domain models,
CW states with the phase shift between the FF and SH components are
modulationally stable in a broad parameter region in this system, provided that
the CW wavenumber does not belong to the system's spectral gap. Stationary
fundamental DSs are found numerically, and are also constructed by means of a
specially devised analytical approximation. Bound states of two and three DSs
are found too. The fundamental DSs and two-solitons bound states are stable in
all the cases when the CW background is stable, which is shown by dint of
calculation of the corresponding eigenvalues, and verified in direct
simulations. Tilted DSs are found too. They attain a maximum contrast at a
finite value of the tilt, that does not depend on the phase mismatch. At a
maximum value of the tilt, which grows with the mismatch, the DS merges into
the CW background. Interactions between the tilted solitons are shown to be
completely elastic.Comment: 10 pages, 12 figures; Journal of Optics A, in pres
CMB Anisotropy of Spherical Spaces
The first-year WMAP data taken at their face value hint that the Universe
might be slightly positively curved and therefore necessarily finite, since all
spherical (Clifford-Klein) space forms M^3 = S^3/Gamma, given by the quotient
of S^3 by a group Gamma of covering transformations, possess this property. We
examine the anisotropy of the cosmic microwave background (CMB) for all typical
groups Gamma corresponding to homogeneous universes. The CMB angular power
spectrum and the temperature correlation function are computed for the
homogeneous spaces as a function of the total energy density parameter
Omega_tot in the large range [1.01, 1.20] and are compared with the WMAP data.
We find that out of the infinitely many homogeneous spaces only the three
corresponding to the binary dihedral group T*, the binary octahedral group O*,
and the binary icosahedral group I* are in agreement with the WMAP
observations. Furthermore, if Omega_tot is restricted to the interval [1.00,
1.04], the space described by T* is excluded since it requires a value of
Omega_tot which is probably too large being in the range [1.06, 1.07]. We thus
conclude that there remain only the two homogeneous spherical spaces S^3/O* and
S^3/I* with Omega_tot of about 1.038 and 1.018, respectively, as possible
topologies for our Universe.Comment: A version with high resolution sky maps can be obtained at
http://www.physik.uni-ulm.de/theo/qc
- …