56 research outputs found

    Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c <i>In Vitro</i>

    Get PDF
    Background: Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes. Methodology/Principal Findings Here we have used biochemical approaches to characterise the interaction(s) of Munc18c with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex. Conclusion/Significance Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in order to stimulate SNARE-mediated membrane fusion

    Skeletal muscle munc18c and syntaxin 4 in human obesity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animal and cell culture data suggest a critical role for Munc18c and Syntaxin 4 proteins in insulin mediated glucose transport in skeletal muscle, but no studies have been published in humans.</p> <p>Methods</p> <p>We investigated the effect of a 12 vs. 48 hr fast on insulin action and skeletal muscle Munc18c and Syntaxin 4 protein in lean and obese subjects. Healthy lean (n = 14; age = 28.0 +/- 1.4 yr; BMI = 22.8 +/- 0.42 kg/m<sup>2</sup>) and obese subjects (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5 kg/m<sup>2</sup>) were studied twice following a 12 and 48 hr fast. Skeletal muscle biopsies were obtained before a 3 hr 40 mU/m<sup>2</sup>/min hyperinsulinemic-euglycemic clamp with [6,6-<sup>2</sup>H<sub>2</sub>]glucose infusion.</p> <p>Results</p> <p>Glucose rate of disappearance (Rd) during the clamp was lower in obese vs. lean subjects after the 12 hr fast (obese: 6.25 +/- 0.67 vs. lean: 9.42 +/- 1.1 mg/kgFFM/min, p = 0.007), and decreased significantly in both groups after the 48 hr fast (obese 3.49 +/- 0.31 vs. lean: 3.91 +/- 0.42 mg/kgFFM/min, p = 0.002). Munc18c content was not significantly different between lean and obese subjects after the 12 hour fast, and decreased after the 48 hr fast in both groups (p = 0.013). Syntaxin 4 content was not altered by obesity or fasting duration. There was a strong positive relationship between plasma glucose concentration and Munc18c content in lean and obese subjects during both 12 and 48 hr fasts (R<sup>2 </sup>= 0.447, p = 0.0015). Significant negative relationships were also found between Munc18c and FFA (p = 0.041), beta-hydroxybutyrate (p = 0.039), and skeletal muscle AKT content (p = 0.035) in lean and obese subjects.</p> <p>Conclusion</p> <p>These data indicate Munc18c and Syntaxin 4 are present in human skeletal muscle. Munc18c content was not significantly different between lean and obese subjects, and is therefore unlikely to explain obesity-induced insulin resistance. Munc18c content decreased after prolonged fasting in lean and obese subjects concurrently with reduced insulin action. These data suggest changes in Munc18c content in skeletal muscle are associated with short-term changes in insulin action in humans.</p

    Concepts for risk-based surveillance in the field of veterinary medicine and veterinary public health: Review of current approaches

    Get PDF
    BACKGROUND: Emerging animal and zoonotic diseases and increasing international trade have resulted in an increased demand for veterinary surveillance systems. However, human and financial resources available to support government veterinary services are becoming more and more limited in many countries world-wide. Intuitively, issues that present higher risks merit higher priority for surveillance resources as investments will yield higher benefit-cost ratios. The rapid rate of acceptance of this core concept of risk-based surveillance has outpaced the development of its theoretical and practical bases. DISCUSSION: The principal objectives of risk-based veterinary surveillance are to identify surveillance needs to protect the health of livestock and consumers, to set priorities, and to allocate resources effectively and efficiently. An important goal is to achieve a higher benefit-cost ratio with existing or reduced resources. We propose to define risk-based surveillance systems as those that apply risk assessment methods in different steps of traditional surveillance design for early detection and management of diseases or hazards. In risk-based designs, public health, economic and trade consequences of diseases play an important role in selection of diseases or hazards. Furthermore, certain strata of the population of interest have a higher probability to be sampled for detection of diseases or hazards. Evaluation of risk-based surveillance systems shall prove that the efficacy of risk-based systems is equal or higher than traditional systems; however, the efficiency (benefit-cost ratio) shall be higher in risk-based surveillance systems. SUMMARY: Risk-based surveillance considerations are useful to support both strategic and operational decision making. This article highlights applications of risk-based surveillance systems in the veterinary field including food safety. Examples are provided for risk-based hazard selection, risk-based selection of sampling strata as well as sample size calculation based on risk considerations

    CAP defines a second signalling pathway required for insulin-stimulated glucose transport

    Full text link
    Insulin stimulates the transport of glucose into fat and muscle cells. Although the precise molecular mechanisms involved in this process remain uncertain, insulin initiates its actions by binding to its tyrosine kinase receptor, leading to the phosphorylation of intracellular substrates. One such substrate is the Cbl protooncogene product(1). Cbl is recruited to the insulin receptor by interaction with the adapter protein CAP, through one of three adjacent SH3 domains in the carboxy terminus of CAP(2). Upon phosphorylation of Cbl, the CAP-Cbl complex dissociates from the insulin receptor and moves to a caveolin-enriched, triton-insoluble membrane fraction(3). Here, to identify a molecular mechanism underlying this subcellular redistribution, we screened a yeast two-hybrid library using the amino-terminal region of CAP and identified the caveolar protein flotillin. Flotillin forms a ternary complex with CAP and Cbl, directing the localization of the CAP-Cbl complex to a lipid raft subdomain of the plasma membrane. Expression of the N-terminal domain of CAP in 3T3-L1 adipocytes blocks the stimulation of glucose transport by insulin, without affecting signalling events that depend on phosphatidylinositol-3-OH kinase. Thus, localization of the Cbl-CAP complex to lipid rafts generates a pathway that is crucial in the regulation of glucose uptake.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62940/1/407202a0.pd

    Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic β cells

    Get PDF
    Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased Gαs recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male β cells

    Gene Targeting Implicates Cdc42 GTPase in GPVI and Non-GPVI Mediated Platelet Filopodia Formation, Secretion and Aggregation

    Get PDF
    Background: Cdc42 and Rac1, members of the Rho family of small GTPases, play critical roles in actin cytoskeleton regulation. We have shown previously that Rac1 is involved in regulation of platelet secretion and aggregation. However, the role of Cdc42 in platelet activation remains controversial. This study was undertaken to better understand the role of Cdc42 in platelet activation. Methodology/Principal Findings: We utilized the Mx-cre;Cdc42 lox/lox inducible mice with transient Cdc42 deletion to investigate the involvement of Cdc42 in platelet function. The Cdc42-deficient mice exhibited a significantly reduced platelet count than the matching Cdc42 +/+ mice. Platelets isolated from Cdc42 2/2, as compared to Cdc42 +/+, mice exhibited (a) diminished phosphorylation of PAK1/2, an effector molecule of Cdc42, (b) inhibition of filopodia formation on immobilized CRP or fibrinogen, (c) inhibition of CRP- or thrombin-induced secretion of ATP and release of P-selectin, (d) inhibition of CRP, collagen or thrombin induced platelet aggregation, and (e) minimal phosphorylation of Akt upon stimulation with CRP or thrombin. The bleeding times were significantly prolonged in Cdc42 2/2 mice compared with Cdc42 +/+ mice. Conclusion/Significance: Our data demonstrate that Cdc42 is required for platelet filopodia formation, secretion an

    Design and utilization of epitope-based databases and predictive tools

    Get PDF
    In the last decade, significant progress has been made in expanding the scope and depth of publicly available immunological databases and online analysis resources, which have become an integral part of the repertoire of tools available to the scientific community for basic and applied research. Herein, we present a general overview of different resources and databases currently available. Because of our association with the Immune Epitope Database and Analysis Resource, this resource is reviewed in more detail. Our review includes aspects such as the development of formal ontologies and the type and breadth of analytical tools available to predict epitopes and analyze immune epitope data. A common feature of immunological databases is the requirement to host large amounts of data extracted from disparate sources. Accordingly, we discuss and review processes to curate the immunological literature, as well as examples of how the curated data can be used to generate a meta-analysis of the epitope knowledge currently available for diseases of worldwide concern, such as influenza and malaria. Finally, we review the impact of immunological databases, by analyzing their usage and citations, and by categorizing the type of citations. Taken together, the results highlight the growing impact and utility of immunological databases for the scientific community

    Munc18c in Adipose Tissue Is Downregulated in Obesity and Is Associated with Insulin

    Get PDF
    OBJECTIVE: Munc18c is associated with glucose metabolism and could play a relevant role in obesity. However, little is known about the regulation of Munc18c expression. We analyzed Munc18c gene expression in human visceral (VAT) and subcutaneous (SAT) adipose tissue and its relationship with obesity and insulin. MATERIALS AND METHODS: We evaluated 70 subjects distributed in 12 non-obese lean subjects, 23 overweight subjects, 12 obese subjects and 23 nondiabetic morbidly obese patients (11 with low insulin resistance and 12 with high insulin resistance). RESULTS: The lean, overweight and obese persons had a greater Munc18c gene expression in adipose tissue than the morbidly obese patients (p<0.001). VAT Munc18c gene expression was predicted by the body mass index (B = −0.001, p = 0.009). In SAT, no associations were found by different multiple regression analysis models. SAT Munc18c gene expression was the main determinant of the improvement in the HOMA-IR index 15 days after bariatric surgery (B = −2148.4, p = 0.038). SAT explant cultures showed that insulin produced a significant down-regulation of Munc18c gene expression (p = 0.048). This decrease was also obtained when explants were incubated with liver X receptor alpha (LXRα) agonist, either without (p = 0.038) or with insulin (p = 0.050). However, Munc18c gene expression was not affected when explants were incubated with insulin plus a sterol regulatory element-binding protein-1c (SREBP-1c) inhibitor (p = 0.504). CONCLUSIONS: Munc18c gene expression in human adipose tissue is down-regulated in morbid obesity. Insulin may have an effect on the Munc18c expression, probably through LXRα and SREBP-1c
    • …
    corecore