1,743 research outputs found

    Spacecraft-spacecraft radio-metric tracking: Signal acquisition requirements and application to Mars approach navigation

    Get PDF
    Doppler and ranging measurements between spacecraft can be obtained only when the ratio of the total received signal power to noise power density (P(sub t)/N(sub 0)) at the receiving spacecraft is sufficiently large that reliable signal detection can be achieved within a reasonable time period. In this article, the requirement on P(sub t)/N(sub 0) for reliable carrier signal detection is calculated as a function of various system parameters, including characteristics of the spacecraft computing hardware and a priori uncertainty in spacecraft-spacecraft relative velocity and acceleration. Also calculated is the P(sub t)/N(sub 0) requirements for reliable detection of a ranging signal, consisting of a carrier with pseudonoise (PN) phase modulation. Once the P(sub t)/N(sub 0) requirement is determined, then for a given set of assumed spacecraft telecommunication characteristics (transmitted signal power, antenna gains, and receiver noise temperatures) it is possible to calculate the maximum range at which a carrier signal or ranging signal may be acquired. For example, if a Mars lander and a spacecraft approaching Mars are each equipped with 1-m-diameter antennas, the transmitted power is 5 W, and the receiver noise temperatures are 350 K, then S-band carrier signal acquisition can be achieved at ranges exceeding 10 million km. An error covariance analysis illustrates the utility of in situ Doppler and ranging measurements for Mars approach navigation. Covariance analysis results indicate that navigation accuracies of a few km can be achieved with either data type. The analysis also illustrates dependency of the achievable accuracy on the approach trajectory velocity

    Rocket Engine Plume Diagnostics at Stennis Space Center

    Get PDF
    The Stennis Space Center has been at the forefront of development and application of exhaust plume spectroscopy to rocket engine health monitoring since 1989. Various spectroscopic techniques, such as emission, absorption, FTIR, LIF, and CARS, have been considered for application at the engine test stands. By far the most successful technology h a been exhaust plume emission spectroscopy. In particular, its application to the Space Shuttle Main Engine (SSME) ground test health monitoring has been invaluable in various engine testing and development activities at SSC since 1989. On several occasions, plume diagnostic methods have successfully detected a problem with one or more components of an engine long before any other sensor indicated a problem. More often, they provide corroboration for a failure mode, if any occurred during an engine test. This paper gives a brief overview of our instrumentation and computational systems for rocket engine plume diagnostics at SSC. Some examples of successful application of exhaust plume spectroscopy (emission as well as absorption) to the SSME testing are presented. Our on-going plume diagnostics technology development projects and future requirements are discussed

    Siren songs or path to salvation? Interpreting the visions of web technology at a UK regional newspaper in crisis, 2006-11

    Get PDF
    A 5-year case study of an established regional newspaper in Britain investigates journalists about their perceptions of convergence in digital technologies. This research is the first ethnographic longitudinal case study of a UK regional newspaper. Although conforming to some trends observed in the wider field of scholarship, the analysis adds to skepticism about any linear or directional views of innovation and adoption: the Northern Echo newspaper journalists were observed to have revised their opinions of optimum Web practices, and sometimes radically reversed policies. Technology is seen in the period as a fluid, amorphous entity. Central corporate authority appeared to diminish in the period as part of a wider reduction in formalism. Questioning functionalist notions of the market, the study suggests cause and effect models of change are often subverted by contradictory perceptions of particular actions. Meanwhile, during technological evolution, the ‘professional imagination’ can be understood as strongly reflecting the parent print culture and its routines, despite pioneering a new convergence partnership with an independent television company

    Mathematical and computer modeling of electro-optic systems using a generic modeling approach

    Get PDF
    The conventional approach to modelling electro-optic sensor systems is to develop separate models for individual systems or classes of system, depending on the detector technology employed in the sensor and the application. However, this ignores commonality in design and in components of these systems. A generic approach is presented for modelling a variety of sensor systems operating in the infrared waveband that also allows systems to be modelled with different levels of detail and at different stages of the product lifecycle. The provision of different model types (parametric and image-flow descriptions) within the generic framework can allow valuable insights to be gained
    corecore