76 research outputs found

    Improved change detection with nearby hands

    Get PDF
    Recent studies have suggested altered visual processing for objects that are near the hands. We present three experiments that test whether an observer’s hands near the display facilitate change detection. While performing the task, observers placed both hands either near or away from the display. When their hands were near the display, change detection performance was more accurate and they held more items in visual short-term memory (experiment 1). Performance was equally improved for all regions across the entire display, suggesting a stronger attentional engagement over all visual stimuli regardless of their relative distances from the hands (experiment 2). Interestingly, when only one hand was placed near the display, we found no facilitation from the left hand and a weak facilitation from the right hand (experiment 3). Together, these data suggest that the right hand is the main source of facilitation, and both hands together produce a nonlinear boost in performance (superadditivity) that cannot be explained by either hand alone. In addition, the presence of the right hand biased observers to attend to the right hemifield first, resulting in a right-bias in change detection performance (experiments 2 and 3)

    Of monkeys and men:Impatience in perceptual decision-making

    Get PDF
    For decades sequential sampling models have successfully accounted for human and monkey decision-making, relying on the standard assumption that decision makers maintain a pre-set decision standard throughout the decision process. Based on the theoretical argument of reward rate maximization, some authors have recently suggested that decision makers become increasingly impatient as time passes and therefore lower their decision standard. Indeed, a number of studies show that computational models with an impatience component provide a good fit to human and monkey decision behavior. However, many of these studies lack quantitative model comparisons and systematic manipulations of rewards. Moreover, the often-cited evidence from single-cell recordings is not unequivocal and complimentary data from human subjects is largely missing. We conclude that, despite some enthusiastic calls for the abandonment of the standard model, the idea of an impatience component has yet to be fully established; we suggest a number of recently developed tools that will help bring the debate to a conclusive settlement

    Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making

    Get PDF
    <div><p>Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making.</p></div

    Making hasty decisions

    No full text

    Chronic <i>Toxoplasma gondii</i> Infection Modulates Hearing Ability across the Adult Life Span

    No full text
    While several studies have shown associations between hearing disorders and congenital toxoplasmosis, the present study investigated the impact of chronic, latent Toxoplasma gondii (T. gondii) infection on hearing loss. We used a regression analysis to explore whether latent T. gondii infection modulates changes in hearing thresholds over an age range from 20 to 70 years. We analyzed audiometric data of 162 T. gondii IgG-positive and 430 T. gondii-negative participants, collected in the Dortmund Vital Study (DVS, ClinicalTrials.gov Identifier: NCT05155397), a prospective study on healthy cognitive aging. The regression analysis indicated that latent toxoplasmosis was associated with an accelerated development in hearing loss over the observed age range. Hearing loss was less frequent in IgG-positive than in IgG-negative participants up to the age of about 40 for a low (0.125–1 kHz)-frequency range. For high (2–8 kHz) frequencies, this pattern reversed for ages above 65 years. We discuss these findings on hearing function in the context of a recently proposed model, suggesting that latent toxoplasmosis can differentially affect brain functions across a lifespan
    corecore