148 research outputs found

    Complexity and Opportunities in Liquid Metal Surface Oxides

    Get PDF
    The ability of metal alloys to rapidly oxidize in ambient condition presents both a challenge and an opportunity. Herein, we focus on opportunities buried in the passivating oxide of liquid metal particles. Recently described sub-surface com-plexity and order present an opportunity to frustrate homogeneous nucleation hence enhanced undercooling. Plasticity of the underlying liquid metal surface offers an autonomously repairing sub-surface hence the lowest E0 component domi-nates the surface unless stoichiometrically limited. This plasticity provides an opportunity to synthesize organometallic polymers that in situ self-assemble to high aspect ratio nanomaterials. An induced surface speciation implies that under the appropriate oxidant tension, the oxide thickness and composition can be tuned, leading to temperature-dependent composition inversion and so-called chameleon metals. The uniqueness of demonstrated capabilities points to the need for more exploration in this small but rather complex part of a metal alloy

    Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering

    Get PDF
    Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate (‘/’ = physisorbed, ‘-’ = chemisorbed), from molten Field’s metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity

    Pot-in-pot reactions: a simple and green approach to efficient organic synthesis

    Get PDF
    Incompatible organic reactions impede efficient green synthesis by making multi-component or cascade reactions a big challenge. This review highlights pot-in-pot reactions (multiple reactions carried out in one pot by separating key reactions with a thin polymeric membrane) as an efficient, green synthetic alternative to conventional synthesis. We discuss the advantages of homogeneous processes to develop new cascade reaction sequences by reviewing the use of polymeric thimbles as selective semi-permeable walls. These thimbles allow small organic molecules to diffuse through while retaining polar reagents, polar solvents, and/or organometallic catalysts. The dynamic and versatile nature of this technique is demonstrated by performing 2- and 3-step cascade reactions in one glass pot. A pot-in-pot reaction approach to synthesis circumvents the need to isolate intermediates, or handling of toxic/unpleasant by-products, therefore enabling synthesis of otherwise challenging molecules, improving the efficiency, or enabling greener approaches to modular synthesis

    Quantifying Gauche Defects and Phase Evolution in Self-Assembled Monolayers through Sessile Drops

    Get PDF
    Self-assembled monolayers (SAMs) are widely used in surface modifications, specifically in tuning the surface chemistry of materials. The structure and properties of SAMs have been extensively studied often with sophisticated tools, even for the simplest n-alkanethiolate SAMs. In SAMs, especially in linear n-alkanethiolates, the properties are dependent on the chain length, which is best manifested in the so-called odd–even effect, a simple yet not fully understood phenomenon. One main challenge is fully delineating the origin of length-dependent properties, which can be due to the structure (ideal SAMs), defect evolution, or substrate-molecule effects. This study demonstrates that utilizing the wetting behavior of polar (water) and nonpolar (hexadecane (HD)) solvents on n-alkanethiolate SAMs formed on ultraflat gold and silver surfaces, the evolution of chain-length-dependent gauche defects can be revealed and parameterized through a newly defined dimensionless number (χ). The observation of the odd–even effect in hydrophobicity, however, depends on the thiol chain length, and it was only observed on longer-chain (\u3eC8) molecules. The trend in this odd–even effect demonstrates that there are three main transitions in the nature of wetting, hence structure, across n-alkanethiols. From wetting with HD, the role of dispersive components in wetting reveal that the SAMs are dynamic, which we attribute to rotations associated with previously reported evolution in gauche defects and changes in packing density. Therefore, from re-expression of the Young–Dupre equation, we define a new dimensionless number associated with molecular conformations, whose periodicity mirrors the energetics of Goodman’s conformations of n-alkanes in unbound states and associated four- or two-twist turns. Therefore, we infer that the evolution in surface energy is largely due to molecular conformations and associated relaxations of the bound thiolates

    Effect of Substrate Morphology on the Odd–Even Effect in Hydrophobicity of Self-Assembled Monolayers

    Get PDF
    Surface roughness, often captured through root-mean-square roughness (Rrms), has been shown to impact the quality of self-assembled monolayers (SAMs) formed on coinage metals. Understanding the effect of roughness on hydrophobicity of SAMs, however, is complicated by the odd-even effect-a zigzag oscillation in contact angles with changes in molecular length. We recently showed that for surfaces with Rrms \u3e 1 nm, the odd-even effect in hydrophobicitycannot be empirically observed. In this report, we compare wetting properties of SAMs on Ag and Au surfaces of different morphologies across the Rrms similar to 1 nm limit. We prepared surfaces with comparable properties (grain sizes and Rrms) and assessed the wetting properties of resultant SAMs. Substrates with Rrms either below or above the odd-even limit were investigated. With smoother surfaces (lower Rrms), an inverted asymmetric odd-evenzigzag oscillation in static contact angles (?s) was observed with change from Au to Ag. Asymmetry in odd-even oscillation in Au was attributed to a larger change in ?s from odd to even number of carbons in the n-alkanethiol and vice versa for Ag. For rougher surfaces, no odd-even effect was observed; however, a gradual increase in the static contact angle was observed. Increase in the average grain sizes (\u3e3 times larger) on rough surfaces did not lead to significant difference in the wetting properties, suggesting that surface roughness significantly dominated the nature of the SAMs. We therefore infer that the predicted roughness-dependent limit to the observation of the odd-even effect in wetting properties of n-alkanethiols cannot be overcome by creating surfaces with large grain sizes for surfaces with Rrms \u3e 1 nm. We also observed that the differences between Au and Ag surfaces are dominated by differences in the even-numbered SAMs, but this difference vanishes with shorter molecular chain length (=C3)

    Limits to the Effect of Substrate Roughness or Smoothness on the Odd–Even Effect in Wetting Properties of n-Alkanethiolate Monolayers

    Get PDF
    This study investigates the effect of roughness on interfacial properties of an n-alkanethiolate self-assembled monolayer (SAM) and uses hydrophobicity to demonstrate the existence of upper and lower limits. This article also sheds light on the origin of the previously unexplained gradual increase in contact angles with increases in the size of the molecule making the SAM. We prepared Au surfaces with a root-mean-square (RMS) roughness of ∼0.2–0.5 nm and compared the wetting properties of n-alkanethiolate (C10–C16) SAMs fabricated on these surfaces. Static contact angles, θs, formed between the SAM and water, diethylene glycol, and hexadecane showed an odd–even effect irrespective of the solvent properties. The average differences in subsequent SAME and SAMO are Δθs|n  – (n+1)| ≈ 1.7° (n = even) and Δθs|n – (n+1)| ≈ 3.1° (n = odd). A gradual increase in θs with increasing length of the molecule was observed, with values ranging from water 104.7–110.7° (overall Δθs = 6.0° while for the evens ΔθsE = 4.4° and odds ΔθsO = 3.5°) to diethylene glycol 72.9–80.4° (overall Δθs = 7.5° while for the evens ΔθsE = 2.9° and odds ΔθsO= 2.4°) and hexadecane 40.4–49.4° (overall Δθs = 9.0° while for the evens ΔθsE = 3.7° and odds ΔθsO = 2.1°). This article establishes that the gradual increase in θs with increasing molecular size in SAMs is due to asymmetry in the zigzag oscillation in the odd–even effect. Comparison of the magnitude and proportion differences in this asymmetry allows us to establish the reduction in interfacial dispersive forces, due to increasing SAM crystallinity with increasing molecular size, as the origin of this asymmetry. By comparing the dependence of θs on surface roughness we infer that (i) RMS roughness ≈ 1 nm is a theoretical limit beyond which the odd–even effect cannot be observed and (ii) on a hypothetically flat surface the maximum difference in hydrophobicity, as expressed in θs, is ∼3°

    Revisiting the Challenges in Fabricating Uniform Coatings with Polyfunctional Molecules on High Surface Energy Materials

    Get PDF
    Modifying the chemistry of a surface has been widely used to influence interfacial properties of a material or nature of interaction between two materials. This article provides an overview on the role of polyfunctional molecules, specifically silanes, in surface modification of polar surfaces (bearing soft nucleophiles). An emphasis on the mechanism of the reaction in the presence of adsorbed water, where the modifying reagents are hydrolysable, is discussed. To highlight the complexity of the reaction, modification of paper with trichlorosilanes is highlighted. Preparation of hydrophobic cellulosic paper, and structure–property relations under different treatment conditions is used to highlight that a monolayer is not always formed during the surface modification. Gel-formation via step-growth polymerization suggests that at the right monomer:adsorbed water ratio, a monolayer will not form but rather self-assembly driven particle formation will occur leading to a textured surface. The review highlights recent work indicating that the focus on monolayer formation, is at the very least, not always the case but gel formation, with concomitant self-assembly, might be the culprit in understanding challenges associated with the use of polyfunctional molecules in surface modification

    Assembled Monolayers Depends upon the Roughness of the Substrate and the Orientation of the Terminal Moiety

    Get PDF
    The origin of the odd even effect in properties of self-assembled monolayers (SAMs) and/or technologies derived from them is poorly understood. We report that hydrophobicity and, hence, surface wetting of SAMs are dominated by the nature of the substrate (surface roughness and identity) and SAM tilt angle, which influences surface dipoles/orientation of the terminal moiety. We measured static contact angles (theta(s)) made by water droplets on n-alkanethiolate SAMs with an odd (SAM(O)) or even (SAM(E)) number of carbons (average theta(s) range of 105.8-112.1 degrees). When SAMs were fabricated on smooth template-stripped metal (M-TS) surfaces [root-mean-square (rms) roughness = 0.36 +/- 0.01 nm for Au-TS and 0.60 +/- 0.04 nm for Ag-TS], the odd-even effect, characterized by a zigzag oscillation in values of theta(s), was observed. We, however, did not observe the same effect with rougher as-deposited (M-AD) surfaces (rms roughness = 2.27 +/- 0.16 nm for Au-AD and 5.13 +/- 0.22 nm for Ag-AD). The odd-even effect in hydrophobicity inverts when the substrate changes from Au-TS (higher theta(s) for SAM(E) than SAM(O), with average Delta theta(s) (vertical bar n - (n + 1)vertical bar) approximate to 3 degrees) to Ag-TS (higher theta(s) for SAM(O) than SAM(E), with average Delta theta(s) (vertical bar n - (n + 1)vertical bar) approximate to 2 degrees). A comparison of hydrophobicity across Ag-TS and Au-TS showed a statistically significant difference (Student\u27s t test) between SAM(E) (Delta theta(s) (vertical bar Ag evens - Au evens vertical bar) approximate to 5 degrees; P \u3c 0.01) but failed to show statistically significant differences on SAM(O) (Delta theta(s) (vertical bar Ag odds) (- Au odds vertical bar) approximate to 1 degrees; p \u3e 0.1). From these results, we deduce that the roughness of the metal substrate (from comparison of M-AD versus M-TS) and orientation of the terminal -CH2CH3 (by comparing SAM(E) and SAM(O) on Au-TS versus Ag-TS) play major roles in the hydrophobicity and, by extension, general wetting properties of n-alkanethiolate SAMs

    Application of Ionic Liquids in Pot-in-Pot Reactions

    Get PDF
    Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot—albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first “pot”. The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models—Fickian and Payne’s models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction

    Synthesis of Interface-Driven Tunable Bandgap Metal Oxides

    Get PDF
    Mixed bandgap and bandgap tunability in semiconductors is critical in expanding their use. Composition alterations through single-crystal epitaxial growth and the formation of multilayer tandem structures are often employed to achieve mixed bandgaps, albeit with limited tunability. Herein, self-assembled one-dimensional coordination polymers provide facile synthons and templates for graphitic C-doped mesoporous oxides, gC-β-Ga2O3 or gC-In2O3 via controlled oxidative ligand ablation. These materials have mixed bandgaps and colors, depending on amount of gC present. The carbon/oxide interface leads to induced gap states, hence, a stoichiometrically tunable band structure. Structurally, a multiscale porous network percolating throughout the material is realized. The nature of the heat treatment and the top-down process allows for facile tunability and the formation of mixed bandgap metal oxides through controlled carbon deposition. As a proof of concept, gC-β-Ga2O3 was utilized as a photocatalyst for CO2 reduction, which demonstrated excellent conversion rates into CH4 and CO
    • …
    corecore