49 research outputs found

    Oligopeptide Sequences of the Metal Binding Domain of CueR Metalloregulatory Proteins as Candidates for Toxic Metal Ion Capture

    Get PDF
    Various toxic metal ion resistance systems operate from bacterial level up to higher plants and animals. In bacteria, metalloregulatory proteins are key factors in the control of metal ion level. Inspired by the metal binding domain of these highly sensitive metal ion sensor proteins we have designed artificial oligopeptides, containing two cysteine residues, and investigated their interaction with cadmium(II) and mercury(II) ions. The studied ligands bound both metal ions with a rather high stability. The composition and solution structure of the various metal ion complexes have been determined. The genetic code of one of the oligopeptide sequences has been introduced into E. coli BL21 cells and (over)produced in the form of a fusion protein. Preliminary investigation of the viability and potential metal ion accumulation of the modified bacteria, compared to control cells, in the presence of cadmium(II) and mercury(II) has also been performed

    Peptide-oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic

    Get PDF
    Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide–oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design

    Structure-Activity Study of an All-d Antimicrobial Octapeptide D2D

    Get PDF
    The increasing emergence of multi-drug resistant bacteria is a serious threat to public health worldwide. Antimicrobial peptides have attracted attention as potential antibiotics since they are present in all multicellular organisms and act as a first line of defence against invading pathogens. We have previously identified a small all-d antimicrobial octapeptide amide kk(1-nal)fk(1-nal)k(nle)-NH2 (D2D) with promising antimicrobial activity. In this work, we have performed a structure-activity relationship study of D2D based on 36 analogues aimed at discovering which elements are important for antimicrobial activity and toxicity. These modifications include an alanine scan, probing variation of hydrophobicity at lys5 and lys7, manipulation of amphipathicity, N-and C-termini deletions and lys-arg substitutions. We found that the hydrophobic residues in position 3 (1-nal), 4 (phe), 6 (1-nal) and 8 (nle) are important for antimicrobial activity and to a lesser extent cationic lysine residues in position 1, 2, 5 and 7. Our best analogue 5, showed MICs of 4 µg/mL against A. baumannii, E. coli, P. aeruginosa and S. aureus with a hemolytic activity of 47% against red blood cells. Furthermore, compound 5 kills bacteria in a concentration-dependent manner as shown by time-kill kinetics. Circular dichroism (CD) spectra of D2D and compounds 1–8 showed that they likely fold into α-helical secondary structure. Small angle x-ray scattering (SAXS) experiments showed that a random unstructured polymer-like chains model could explain D2D and compounds 1, 3, 4, 6 and 8. Solution structure of compound 5 can be described with a nanotube structure model, compound 7 can be described with a filament-like structure model, while compound 2 can be described with both models. Lipid interaction probed by small angle X-ray scattering (SAXS) showed that a higher amount of compound 5 (~50–60%) inserts into the bilayer compared to D2D (~30–50%). D2D still remains the lead compound, however compound 5 is an interesting antimicrobial peptide for further investigations due to its nanotube structure and minor improvement to antimicrobial activity compared to D2D

    Structural and dynamics studies of a truncated variant of CI repressor from bacteriophage TP901-1

    Get PDF
    International audienceThe CI repressor from the temperate bacteriophage TP901-1 consists of two folded domains, an N-terminal helix-turn-helix DNA-binding domain (NTD) and a C-terminal oligomerization domain (CTD), which we here suggest to be further divided into CTD1 and CTD2. Full-length CI is a hexameric protein, whereas a truncated version, CI∆58, forms dimers. We identify the dimerization region of CI∆58 as CTD1 and determine its secondary structure to be helical both within the context of CI∆58 and in isolation. To our knowledge this is the first time that a helical dimerization domain has been found in a phage repressor. We also precisely determine the length of the flexible linker connecting the NTD to the CTD. Using electrophoretic mobility shift assays and native mass spectrometry, we show that CI∆58 interacts with the OL operator site as one dimer bound to both half-sites, and with much higher affinity than the isolated NTD domain thus demonstrating cooperativity between the two DNA binding domains. Finally, using small angle X-ray scattering data and state-of-the-art ensemble selection techniques, we delineate the conformational space sampled by CI∆58 in solution, and we discuss the possible role that the dynamics play in CI-repressor function

    Tying Up a Loose End: On the Role of the C‐Terminal CCHHRAG Fragment of the Metalloregulator CueR

    Get PDF
    The transcriptional regulator CueR is activated by the binding of CuI, AgI, or AuI to two cysteinates in a near-linear fashion. The C-terminal CCHHRAG sequence in Escherichia coli CueR present potential additional metal binding ligands and here we explore the effect of deleting this fragment on the binding of AgI to CueR. CD spectroscopic and ESI-MS data indicate that the high AgI-binding affinity of WT-CueR is significantly reduced in Δ7C-CueR.[111 Ag PAC spectroscopy demonstrates that the WT-CueR metal site structure (AgS2) is conserved, but less populated in the truncated variant. Thus, the function of the C-terminal fragment may be to stabilize the two-coordinate metal site for cognate monovalent metal ions. In a broader perspective this is an example of residues beyond the second coordination sphere affecting metal site physicochemical properties while leaving the structure unperturbed
    corecore