983 research outputs found
On the finite-size effects in two segregated Bose-Einstein condensates restricted by a hard wall
The finite-size effects in two segregated Bose-Einstein condensates (BECs)
restricted by a hard wall is studied by means of the Gross-Pitaevskii equations
in the double-parabola approximation (DPA). Starting from the consistency
between the boundary conditions (BCs) imposed on condensates in confined
geometry and in the full space, we find all possible BCs together with the
corresponding condensate profiles and interface tensions. We discover two
finite-size effects: a) The ground state derived from the Neumann BC is stable
whereas the ground states derived from the Robin and Dirichlet BCs are
unstable. b) Thereby, there equally manifest two possible wetting phase
transitions originating from two unstable states. However, the one associated
with the Robin BC is more favourable because it corresponds to a smaller
interface tension.Comment: 14 pages, 7 figure
Probing molecular frame photoionization via laser generated high-order harmonics from aligned molecules
Present photoionization experiments cannot measure molecular frame
photoelectron angular distributions (MFPAD) from the outermost valence
electrons of molecules. We show that details of the MFPAD can be retrieved with
high-order harmonics generated by infrared lasers from aligned molecules. Using
accurately calculated photoionization transition dipole moments for
fixed-in-space molecules, we show that the dependence of the magnitude and
phase of the high-order harmonics on the alignment angle of the molecules
observed in recent experiments can be quantitatively reproduced. This result
provides the needed theoretical basis for ultrafast dynamic chemical imaging
using infrared laser pulses.Comment: 5 pages, 4 figure
Quantitative Rescattering Theory for high-order harmonic generation from molecules
The Quantitative Rescattering Theory (QRS) for high-order harmonic generation
(HHG) by intense laser pulses is presented. According to the QRS, HHG spectra
can be expressed as a product of a returning electron wave packet and the
photo-recombination differential cross section of the {\em laser-free}
continuum electron back to the initial bound state. We show that the shape of
the returning electron wave packet is determined mostly by the laser only. The
returning electron wave packets can be obtained from the strong-field
approximation or from the solution of the time-dependent Schr\"odinger equation
(TDSE) for a reference atom. The validity of the QRS is carefully examined by
checking against accurate results for both harmonic magnitude and phase from
the solution of the TDSE for atomic targets within the single active electron
approximation. Combining with accurate transition dipoles obtained from
state-of-the-art molecular photoionization calculations, we further show that
available experimental measurements for HHG from partially aligned molecules
can be explained by the QRS. Our results show that quantitative description of
the HHG from aligned molecules has become possible. Since infrared lasers of
pulse durations of a few femtoseconds are easily available in the laboratory,
they may be used for dynamic imaging of a transient molecule with femtosecond
temporal resolutions.Comment: 50 pages, 15 figure
Benchmarking accurate spectral phase retrieval of single attosecond pulses
Citation: Wei, H., Le, A. T., Morishita, T., Yu, C., & Lin, C. D. (2015). Benchmarking accurate spectral phase retrieval of single attosecond pulses. Physical Review A, 91(2), 15. doi:10.1103/PhysRevA.91.023407A single extreme-ultraviolet (XUV) attosecond pulse or pulse train in the time domain is fully characterized if its spectral amplitude and phase are both determined. The spectral amplitude can be easily obtained from photoionization of simple atoms where accurate photoionization cross sections have been measured from, e.g., synchrotron radiations. To determine the spectral phase, at present the standard method is to carry out XUV photoionization in the presence of a dressing infrared (IR) laser. In this work, we examine the accuracy of current phase retrieval methods (PROOF and iPROOF) where the dressing IR is relatively weak such that photoelectron spectra can be accurately calculated by second-order perturbation theory. We suggest a modified method named swPROOF (scattering wave phase retrieval by omega oscillation filtering) which utilizes accurate one-photon and two-photon dipole transition matrix elements and removes the approximations made in PROOF and iPROOF. We show that the swPROOF method can in general retrieve accurate spectral phase compared to other simpler models that have been suggested. We benchmark the accuracy of these phase retrieval methods through simulating the spectrogram by solving the time-dependent Schrodinger equation numerically using several known single attosecond pulses with a fixed spectral amplitude but different spectral phases
Theory of high-order harmonic generation from molecules by intense laser pulses
We show that high-order harmonics generated from molecules by intense laser
pulses can be expressed as the product of a returning electron wave packet and
the photo-recombination cross section (PRCS) where the electron wave packet can
be obtained from simple strong-field approximation (SFA) or from a companion
atomic target. Using these wave packets but replacing the PRCS obtained from
SFA or from the atomic target by the accurate PRCS from molecules, the
resulting HHG spectra are shown to agree well with the benchmark results from
direct numerical solution of the time-dependent Schr\"odinger equation, for the
case of H in laser fields. The result illustrates that these powerful
theoretical tools can be used for obtaining high-order harmonic spectra from
molecules. More importantly, the results imply that the PRCS extracted from
laser-induced HHG spectra can be used for time-resolved dynamic chemical
imaging of transient molecules with temporal resolutions down to a few
femtoseconds.Comment: 10 pages, 5 figure
New determination of structure parameters in strong field tunneling ionization theory of molecules
In the strong field molecular tunneling ionization theory of Tong et al.
[Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic
wavefunction of the molecular orbital from which the electron is removed. The
orbital wavefunctions obtained from standard quantum chemistry packages in
general are not good enough in the asymptotic region. Here we construct a
one-electron model potential for several linear molecules using density
functional theory (DFT). We show that the asymptotic wavefunction can be
improved with an iteration method and after one iteration accurate asymptotic
wavefunctions and structure parameters are determined. With the new parameters
we examine the alignment-dependent tunneling ionization probabilities for
several molecules and compare with other calculations and with recent
measurements, including ionization from inner molecular orbitals
Analysis of Angular Dependence of Strong-Field Tunneling Ionization for CO₂
We analyzed the discrepancy of the angular dependence of strong-field ionization for CO₂ among the different theoretical calculations and experiments. Using a more accurate ground-state wave function of CO₂ in the asymptotic region, we showed that the accuracy in the earlier tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)] is much improved. We also concluded that the angular dependence deduced from the experiment of Pavicic [Phys. Rev. Lett. 98, 243001 (2007)] appears to be too narrowly distributed
Erratum: Determination of Structure Parameters in Strong-Field Tunneling Ionization Theory of Molecules (Physical Review a (2010) 81 (033423))
There are several errors in Tables V and VI of our article. In Table V, the C2m of the HOMO-1 (1π) of CO molecule should be 0.014. In Table VI, the binding energies of 2pπg and 2pπu of H₂⁺ should be 0.2267 and 0.4288, respectively
Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers
We studied the photoelectron spectra generated by an intense few-cycle
infrared laser pulse. By focusing on the angular distributions of the back
rescattered high energy photoelectrons, we show that accurate differential
elastic scattering cross sections of the target ion by free electrons can be
extracted. Since the incident direction and the energy of the free electrons
can be easily changed by manipulating the laser's polarization, intensity, and
wavelength, these extracted elastic scattering cross sections, in combination
with more advanced inversion algorithms, may be used to reconstruct the
effective single-scattering potential of the molecule, thus opening up the
possibility of using few-cycle infrared lasers as powerful table-top tools for
imaging chemical and biological transformations, with the desired unprecedented
temporal and spatial resolutions.Comment: 16 pages, 6 figure
- …