29 research outputs found

    A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors

    Get PDF
    There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF) was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1Ξ± (HIF-1Ξ±) and nuclear factor-kappa B (NF-ΞΊB) were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-ΞΊB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-ΞΊB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors

    Regulation of MYCN expression in human neuroblastoma cells

    Get PDF
    Contains fulltext : 81722.pdf (publisher's version ) (Open Access)BACKGROUND: Amplification of the MYCN gene in neuroblastoma (NB) is associated with a poor prognosis. However, MYCN-amplification does not automatically result in higher expression of MYCN in children with NB. We hypothesized that the discrepancy between MYCN gene expression and prognosis in these children might be explained by the expression of either MYCN-opposite strand (MYCNOS) or the shortened MYCN-isoform (DeltaMYCN) that was recently identified in fetal tissues. Both MYCNOS and DeltaMYCN are potential inhibitors of MYCN either at the mRNA or at the protein level. METHODS: Expression of MYCN, MYCNOS and DeltaMYCN was measured in human NB tissues of different stages. Transcript levels were quantified using a real-time reverse transcriptase polymerase chain reaction assay (QPCR). In addition, relative expression of these three transcripts was compared to the number of MYCN copies, which was determined by genomic real-time PCR (gQPCR). RESULTS: Both DeltaMYCN and MYCNOS are expressed in all NBs examined. In NBs with MYCN-amplification, these transcripts are significantly higher expressed. The ratio of MYCN:DeltaMYCN expression was identical in all tested NBs. This indicates that DeltaMYCN and MYCN are co-regulated, which suggests that DeltaMYCN is not a regulator of MYCN in NB. However, the ratio of MYCNOS:MYCN expression is directly correlated with NB disease stage (p = 0.007). In the more advanced NB stages and NBs with MYCN-amplification, relatively more MYCNOS is present as compared to MYCN. Expression of the antisense gene MYCNOS might be relevant to the progression of NB, potentially by directly inhibiting MYCN transcription by transcriptional interference at the DNA level. CONCLUSION: The MYCNOS:MYCN-ratio in NBs is significantly correlated with both MYCN-amplification and NB-stage. Our data indicate that in NB, MYCN expression levels might be influenced by MYCNOS but not by DeltaMYCN

    REST mediates resolution of HIF-dependent gene expression in prolonged hypoxia

    Get PDF
    The hypoxia-inducible factor (HIF) is a key regulator of the cellular response to hypoxia which promotes oxygen delivery and metabolic adaptation to oxygen deprivation. However, the degree and duration of HIF-1Ξ± expression in hypoxia must be carefully balanced within cells in order to avoid unwanted side effects associated with excessive activity. The expression of HIF-1Ξ± mRNA is suppressed in prolonged hypoxia, suggesting that the control of HIF1A gene transcription is tightly regulated by negative feedback mechanisms. Little is known about the resolution of the HIF-1Ξ± protein response and the suppression of HIF-1Ξ± mRNA in prolonged hypoxia. Here, we demonstrate that the Repressor Element 1-Silencing Transcription factor (REST) binds to the HIF-1Ξ± promoter in a hypoxia-dependent manner. Knockdown of REST using RNAi increases the expression of HIF-1Ξ± mRNA, protein and transcriptional activity. Furthermore REST knockdown increases glucose consumption and lactate production in a HIF-1Ξ±- (but not HIF-2Ξ±-) dependent manner. Finally, REST promotes the resolution of HIF-1Ξ± protein expression in prolonged hypoxia. In conclusion, we hypothesize that REST represses transcription of HIF-1Ξ± in prolonged hypoxia, thus contributing to the resolution of the HIF-1Ξ± response

    Epigenetic modifications in cardiovascular disease

    Get PDF
    Epigenetics represents a phenomenon of altered heritable phenotypic expression of genetic information occurring without changes in DNA sequence. Epigenetic modifications control embryonic development, differentiation and stem cell (re)programming. These modifications can be affected by exogenous stimuli (e.g., diabetic milieu, smoking) and oftentimes culminate in disease initiation. DNA methylation has been studied extensively and represents a well-understood epigenetic mechanism. During this process cytosine residues preceding a guanosine in the DNA sequence are methylated. CpG-islands are short-interspersed DNA sequences with clusters of CG sequences. The abnormal methylation of CpG islands in the promoter region of genes leads to a silencing of genetic information and finally to alteration of biological function. Emerging data suggest that these epigenetic modifications also impact on the development of cardiovascular disease. Histone modifications lead to the modulation of the expression of genetic information through modification of DNA accessibility. In addition, RNA-based mechanisms (e.g., microRNAs and long non-coding RNAs) influence the development of disease. We here outline the recent work pertaining to epigenetic changes in a cardiovascular disease setting

    Long non-coding RNAs and cancer: a new frontier of translational research?

    Get PDF
    Author manuscriptTiling array and novel sequencing technologies have made available the transcription profile of the entire human genome. However, the extent of transcription and the function of genetic elements that occur outside of protein-coding genes, particularly those involved in disease, are still a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as current and potential future applications of lncRNA research in the treatment of cancer.RS is supported as a fellow of the TALENTS Programme (7th R&D Framework Programme, Specific Programme: PEOPLEβ€”Marie Curie Actionsβ€”COFUND). MIA is supported as a PhD fellow of the FCT (Fundação para a CiΓͺncia e Tecnologia), Portugal. GAC is supported as a fellow by The University of Texas MD Anderson Cancer Center Research Trust, as a research scholar by The University of Texas System Regents, and by the Chronic Lymphocytic Leukemia Global Research Foundation. Work in GAC’s laboratory is supported in part by the NIH/ NCI (CA135444); a Department of Defense Breast Cancer Idea Award; Developmental Research Awards from the Breast Cancer, Ovarian Cancer, Brain Cancer, Multiple Myeloma and Leukemia Specialized Programs of Research Excellence (SPORE) grants from the National Institutes of Health; a 2009 Seena Magowitz–Pancreatic Cancer Action Network AACR Pilot Grant; the Laura and John Arnold Foundation and the RGK Foundation

    The Genetic Signatures of Noncoding RNAs

    Get PDF
    The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non–protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses

    KDM4A regulates HIF-1 levels through H3K9me3

    Get PDF
    Abstract Regions of hypoxia (low oxygen) occur in most solid tumours and cells in these areas are the most aggressive and therapy resistant. In response to decreased oxygen, extensive changes in gene expression mediated by Hypoxia-Inducible Factors (HIFs) contribute significantly to the aggressive hypoxic tumour phenotype. In addition to HIFs, multiple histone demethylases are altered in their expression and activity, providing a secondary mechanism to extend the hypoxic signalling response. In this study, we demonstrate that the levels of HIF-1Ξ± are directly controlled by the repressive chromatin mark, H3K9me3. In conditions where the histone demethylase KDM4A is depleted or inactive, H3K9me3 accumulates at the HIF-1Ξ± locus, leading to a decrease in HIF-1Ξ± mRNA and a reduction in HIF-1Ξ± stabilisation. Loss of KDM4A in hypoxic conditions leads to a decreased HIF-1Ξ± mediated transcriptional response and correlates with a reduction in the characteristics associated with tumour aggressiveness, including invasion, migration, and oxygen consumption. The contribution of KDM4A to the regulation of HIF-1Ξ± is most robust in conditions of mild hypoxia. This suggests that KDM4A can enhance the function of HIF-1Ξ± by increasing the total available protein to counteract any residual activity of prolyl hydroxylases
    corecore