13 research outputs found

    Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors

    Get PDF
    International audienceEndocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus, and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR) is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation, and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation, and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ), the thyroid hormone (TRα, β), the retinoid X receptors (RXRα, β, γ), and peroxisome proliferator-activated (PPAR α, γ) receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife. In this review, we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants, and cosmetics

    Reporter cell lines to evaluate the selectivity of chemicals for human and zebrafish estrogen and peroxysome proliferator activated γ receptors

    Get PDF
    International audienceZebrafish is increasingly used as an animal model to study the effects of environmental nuclear receptors (NRs) ligands. As most of these compounds have only been tested on human NRs, it is necessary to measure their effects on zebrafish NRs. Estrogen receptors (ER) α and β and peroxysome proliferator activated receptor (PPAR) γ are main targets of environmental disrupting compounds (EDCs). In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα, zfERβ1, and zfERβ2. Only one isoform of PPARγ is expressed in both humans and zebrafish. In this review, we described reporter cell lines that we established to study the interaction of EDCs with human and zebrafish ERs and PPARγ. Using these cell lines, we observed that zfERs are thermo-sensitive while zfPPARγ is not. We also showed significant differences in the ability of environmental and synthetic ligands to modulate activation of zfERs and zfPPARγ in comparison to hERs and hPPARγ. Some environmental estrogens (bisphenol A, mycoestrogens) which are hER panagonists displayed greater potency for zfERα as compared to zfERβs. hERβ selective agonists (8βVE2, DPN, phytoestrogens) also displayed zfERα selectivity. Among hERα selective synthetic agonists, 16α-LE2 was the most zfERα selective compound. Almost all zfPPARγ environmental ligands (halogenated bisphenol A derivatives, phthalates, perfluorinated compounds) displayed similar affinity for human and zebrafish PPARγ while pharmaceutical hPPARγ agonists like thiazolidones are not recognized by zfPPARγ. Altogether, our studies show that all hERs and hPPARγ ligands do not control in a similar manner the transcriptional activity of zfERs and zfPPARγ and point out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology

    Characterization and Plasma Measurement of the WE-14 Peptide in Patients with Pheochromocytoma

    Get PDF
    International audienceGranins and their derived peptides are valuable circulating biological markers of neuroendocrine tumors. The aim of the present study was to investigate the tumoral chromogranin A (CgA)-derived peptide WE-14 and the potential advantage to combine plasma WE-14 detection with the EM66 assay and the existing current CgA assay for the diagnosis of pheochromocytoma. Compared to healthy volunteers, plasma WE-14 levels were 5.4-fold higher in patients with pheochromocytoma, but returned to normal values after surgical resection of the tumor. Determination of plasma CgA and EM66 concentrations in the same group of patients revealed that the test assays for these markers had an overall 84% diagnostic sensitivity, which is identical to that determined for WE-14. However, we found that WE-14 measurement improved the diagnostic sensitivity when combined with the results of CgA or EM66 assays. By combining the results of the three assays, the sensitivity for the diagnosis of pheochromocytoma was increased to 95%. In fact, the combination of WE-14 with either CgA or EM66 test assays achieved 100% sensitivity for the diagnosis of paragangliomas and sporadic or malignant pheochromocytomas if taken separately to account for the heterogeneity of the tumor. These data indicate that WE-14 is produced in pheochromocytoma and secreted into the general circulation, and that elevated plasma WE-14 levels are correlated with the occurrence of this chromaffin cell tumor. In addition, in association with other biological markers, such as CgA and/or EM66, WE-14 measurement systematically improves the diagnostic sensitivity for pheochromocytoma. These findings support the notion that granin-processing products may represent complementary tools for the diagnosis of neuroendocrine tumors

    Insights into the activation mechanism of human estrogen-related receptor γ by environmental endocrine disruptors

    No full text
    International audienceThe estrogen-related receptor γ (ERRγ, NR3B3) is a constitutively active nuclear receptor which has been proposed to act as a mediator of the low-dose effects of a number of environmental endocrine-disrupting chemicals (EDCs) such as the xenoestrogen bisphenol-A (BPA). To better characterize the ability of exogenous compounds to bind and activate ERRγ, we used a combination of cell-based, biochemical, structural and computational approaches. A purposely created stable cell line allowed for the determination of the EC50s for over 30 environmental ERRγ ligands, including previously unknown ones. Interestingly, affinity constants (Kds) of the most potent compounds measured by isothermal titration calorimetry were in the 50–500 nM range, in agreement with their receptor activation potencies. Crystallographic analysis of the interaction between the ERRγ ligand-binding domain (LBD) and compounds of the bisphenol, alkylphenol and naphthol families revealed a partially shared binding mode and minimal alterations of the receptor conformation upon ligand binding. Further biophysical characterizations coupled to molecular dynamics simulations suggested a mechanism through which ERRγ ligands would exhibit their agonistic properties by preserving the transcriptionally active form of the receptor while rigidifying some loop regions with associated functions. This unique mechanism contrasts with the classical one involving a ligand-induced repositioning and stabilization of the C-terminal activation helix H12

    Granins and their derived peptides in normal and tumoral chromaffin tissue: Implications for the diagnosis and prognosis of pheochromocytoma

    No full text
    International audiencePheochromocytomas are rare catecholamine-secreting tumors that arise from chromaffin tissue within the adrenal medulla and extra-adrenal sites. Typical clinical manifestations are sustained or paroxysmal hypertension, severe headaches, palpitations and sweating resulting from hormone excess. However, their presentation is highly variable and can mimic many other diseases. The diagnosis of pheochromocytomas depends mainly upon the demonstration of catecholamine excess by 24-h urinary catecholamines and metanephrines or plasma metanephrines. Occurrence of malignant pheochromocytomas can only be asserted by imaging of metastatic lesions, which are associated with a poor survival rate. The characterization of tissue, circulating or genetic markers is therefore crucial for the management of these tumors. Proteins of the granin family and their derived peptides are present in dense-core secretory vesicles and secreted into the bloodstream, making them useful markers for the identification of neuroendocrine cells and neoplasms. In this context, we will focus here on reviewing the distribution and characterization of granins and their processing products in normal and tumoral chromaffin cells, and their clinical usefulness for the diagnosis and prognosis of pheochromocytomas. It appears that, except SgIII, all members of the granin family i.e. CgA, CgB, SgII, SgIV–SgVII and proSAAS, and most of their derived peptides are present in adrenomedullary chromaffin cells and in pheochromocytes. Moreover, besides the routinely used CgA test assays, other assays have been developed to measure concentrations of tissue and/or circulating granins or their derived peptides in order to detect the occurrence of pheochromocytomas. In most cases, elevated levels of these entities were found, in correlation with tumor occurrence, while rarely discriminating between benign and malignant neoplasms. Nevertheless, measurement of the levels of granins and derived peptides improves the diagnostic sensitivity and may therefore provide a complementary tool for the management of pheochromocytomas. However, the existing data need to be substantiated in larger groups of patients, particularly in the case of malignant disease

    Increased expression of the HDAC 9 gene is associated with antiestrogen‐resistance of breast cancers

    No full text
    International audienceEstrogens play a pivotal role in breast cancer etiology, and endocrine therapy remains the main first line treatment for estrogen receptor‐alpha (ER α)‐positive breast cancer. ER are transcription factors whose activity is finely regulated by various regulatory complexes, including histone deacetylases (HDACs). Here, we investigated the role of HDAC 9 in ER α signaling and response to antiestrogens in breast cancer cells. Various Michigan Cancer Foundation‐7 (MCF 7) breast cancer cell lines that overexpress class II a HDAC 9 or that are resistant to the partial antiestrogen 4‐hydroxy‐tamoxifen (OHTam) were used to study phenotypic changes in response to ER ligands by using transcriptomic and gene set enrichment analyses. Kaplan–Meier survival analyses were performed using public transcriptomic datasets from human breast cancer biopsies. In MCF 7 breast cancer cells, HDAC 9 decreased ER α mRNA and protein expression and inhibited its transcriptional activity. Conversely, HDAC 9 mRNA was strongly overexpressed in OHT am‐resistant MCF 7 cells and in ER α‐negative breast tumor cell lines. Moreover, HDAC 9‐overexpressing cells were less sensitive to OHT am antiproliferative effects compared with parental MCF 7 cells. Several genes (including MUC 1, SMC 3 and S100P) were similarly deregulated in OHT am‐resistant and in HDAC 9‐overexpressing MCF 7 cells. Finally, HDAC 9 expression was positively associated with genes upregulated in endocrine therapy‐resistant breast cancers and high HDAC 9 levels were associated with worse prognosis in patients treated with OHT am. These results demonstrate the complex interactions of class II a HDAC 9 with ER α signaling in breast cancer cells and its effect on the response to hormone therap

    Functional remodeling of gap junction-mediated electrical communication between adrenal chromaffin cells in stressed rats.: chromaffin cell coupling in stressed rats

    No full text
    International audienceAn increase in circulating catecholamine levels represents one of the mechanisms whereby organisms cope with stress. In the periphery, catecholamines mainly originate from the sympathoadrenal system. As we reported, in addition to the central control through cholinergic innervation, a local gap junction-delineated route between adrenal chromaffin cells contributes to catecholamine exocytosis. Here, we investigated whether this intercellular communication is modified when the hormonal demand is increased as observed during cold stress. Our results show that in cold exposed rats, gap-junctional communication undergoes a functional plasticity, as evidenced by an increased number of dye-coupled cells. Of a physiological interest is that this upregulation of gap-junctional coupling results in the appearance of a robust electrical coupling between chromaffin cells that allows the transmission of action potentials between coupled cells. This enhancement of gap-junctional communication parallels an increase in expression levels of connexin36 (Cx36) and connexin43 (Cx43) proteins. Both transcriptional and posttranslational mechanisms are involved because Cx36 transcripts are increased in stressed rats and the expression of the scaffolding protein zonula occludens-1, known to interact with both Cx36 and Cx43, is also upregulated. Consistent with an upregulated coupling extent in stressed rats, the cytosolic Ca(2+) concentration rises triggered in a single cell by an iontophoretic application of nicotine occur simultaneously in several neighboring cells. These results describe for the first time a functional plasticity of junctional coupling between adult chromaffin cells that should be crucial for adaptation to stress or sensitization to subsequent stressors

    Metoclopramide stimulates catecholamine- and granin-derived peptide secretion from pheochromocytoma cells through activation of serotonin type 4 (5-HT4) receptors

    No full text
    International audienceThe gastroprokinetic agent metoclopramide is known to stimulate catecholamine secretion from pheochromocytomas. The aim of the study was to investigate the mechanism of action of metoclopramide and expression of serotonin type 4 (5-HT 4) receptors in pheochromocytoma tissues. Tissue explants, obtained from 18 pheochromocytomas including the tumor removed from a 46-year-old female patient who experienced life-threatening hypertension crisis after metoclopramide administration and 17 additional pheochromocytomas (9 benign and 8 malignant) were studied. Cultured pheochromocytoma cells derived from the patient who previously received metoclopramide were incubated with metoclopramide and various 5-HT 4 receptor ligands. In addition, total mRNAs were extracted from all the 18 tumors. Catecholamine-and granin-derived peptide concentrations were measured in pheochromocytoma cell incubation medium by HPLC and radioimmunological assays. In addition, expression of 5-HT 4 receptor mRNAs in the 18 pheochromocytomas was investigated by the use of reverse transcriptase-PCR. Results: Metoclopramide and the 5-HT 4 receptor agonist cisapride were found to activate catecholamine-and granin-derived peptide secretions by cultured tumor cells. Metoclopramide-and cisapride-evoked catecholamine-and granin-derived peptide productions were inhibited by the 5-HT 4 receptor antagonist GR 113808. 5-HT 4 receptor mRNAs were detected in the patient's tumor and the series of 17 additional pheochromocytomas. This study shows that pheochromocytomas express functional 5-HT 4 receptors that are responsible for the stimulatory action of metoclopramide on catecholamine-and granin-derived peptide secretion. All 5-HT 4 receptor agonists must therefore be contraindicated in patients with proven or suspected pheochromocytoma

    Identification of Potential Gene Markers and Insights into the Pathophysiology of Pheochromocytoma Malignancy

    No full text
    International audienceContext: Pheochromocytomas are catecholamine-producing tumors that are generally benign but that can also present as or develop into malignancy. Occurrence of malignant pheochromocytomas can only be asserted by imaging of metastatic lesions. Objectives: We conducted a gene expression profiling of benign and malignant tumors to identify a gene signature that would allow us to discriminate benign from malignant pheochromocytomas and to gain a better understanding of tumorigenic pathways associated with malignancy. Design: A total of 36 patients with pheochromocytoma was studied retrospectively. There were 18 (nine benign and nine malignant) tumors used for gene expression profiling on pangenomic oligonucleotide microarrays. Results: We identified and validated a set of predictor genes that could accurately distinguish the two tumor subtypes through unsu-pervised clustering. Most of the differentially expressed genes were down-regulated in malignant tumors, and several of these genes encoded neuroendocrine factors involved in prominent characteristics of chromaffin cell biology. In particular, the expression of two key processing enzymes of trophic peptides, peptidylglycine-amidating monooxygenase and glutaminyl-peptide cyclotransferase, was reduced in malignant pheochromocytomas. Conclusion: The gene expression profiling of benign and malignant pheochromocytomas clearly identified a set of genes that could be used as a prognostic multi-marker and revealed that the expression of several genes encoding neuroendocrine proteins was reduced in malignant compared with benign tumors. (J Clin Endocrinol Metab 92: 4865– 4872, 2007
    corecore