86 research outputs found

    Shell Disease Syndrome Is Associated with Reduced and Shifted Epibacterial Diversity on the Carapace of the Crustacean Cancer pagurus

    Get PDF
    Crustaceans increasingly suffer from the black spot shell disease syndrome, which principally results from bacterial breakdown of their chitinous exoskeleton. Since Cancer pagurus is highly susceptible to this disease, we compared the bacterial communities of black spot affected and non-affected areas of the carapace by amplicon sequencing of 16S rRNA genes and 16S rRNA. Within each spot, bacterial communities of affected areas were less diverse compared to communities from non-affected areas. Communities of different affected spots were, however, more divergent from each other, compared to those of different nonaffected areas. This indicates a reduced and shifted microbial community composition caused by the black spot disease. Different communities found in black spots likely indicate different stages of the disease. In affected areas, Flavobacteriaceae rose up to one of the most abundant and active families, due to massive increase of Aquimarina spp., suggesting a significant role in shell disease syndrome. We isolated 75 bacterial strains from diseased and healthy areas, which primarily affiliated with Proteobacteria and Bacteroidetes, thus reflecting the dominant phyla detected by amplicon sequencing. The ability to degrade chitin was mainly found for Gammaproteobacteria and Aquimarina spp. within the Flavobacteriia, while the ability to use N-acetylglucosamine, the monomer of the polysaccharide chitin, was observed for most isolates, including many Alphaproteobacteria. Furthermore, one third of the isolates showed antagonistic properties. The combination of bacterial community analysis and the physiological properties of the isolates provides insights into a functional complex epibacterial community on the carapace of C. pagurus. Importance In recent years, the shell disease syndrome was detected for several ecologically and economically important crustacean species. Large proportions of populations are affected, e.g., >60% of the widely distributed species Cancer pagurus in different North Sea areas. Bacteria play a significant role in the development of different forms of shell disease, all characterized by microbial chitinolytic degradation of the outer shell. By comparing the bacterial communities of healthy and diseased areas of the shell of C. pagurus we could demonstrate that the disease causes a reduced bacterial diversity within affected areas, a phenomenon co-occurring also with many other diseases. Furthermore, the community composition dramatically changed, with some taxa rising to high relative abundances and showing increased activity, indicating a strong participation in shell disease. Characterization of bacterial isolates obtained from affected and non-affected spots provided deeper insights in their physiological properties and thus the possible role within the microbiome

    Production of a Blue Pigment (Glaukothalin) by Marine Rheinheimera spp.

    Get PDF
    Two γ-Proteobacteria strains, that is, HP1 and HP9, which both produce a diffusible deep blue pigment, were isolated from the German Wadden Sea and from the Øresund, Denmark, respectively. Both strains affiliate with the genus Rheinheimera. Small amounts of the pigment could be extracted from HP1 grown in a 50 L fermenter and were purified chromatographically. Chemical analysis of the pigment including NMR and mass spectrometry led to a molecular formula of C34H56N4O4 (m.w. 584.85) which has not yet been reported in literature. The molecule is highly symmetrically and consists of two heterocyclic halves to which aliphatic side chains are attached. The pigment has been named glaukothalin due to its blue color and its marine origin (glaukos, gr. = blue, thalatta, gr. = sea). Production of glaukothalin on MB2216 agar plates by our Rheinheimera strains is affected in the presence of other bacterial strains either increasing or decreasing pigment production. The addition of a single amino acid, arginine (5 gl−1), greatly increases pigment production by our Rheinheimera strains. Even though the production of glaukothalin leads to inhibitory activity against three bacterial strains from marine particles, our Rheinheimera isolates are inhibited by various bacteria of different phylogenetic groups. The ecological role of glaukothalin production by Rheinheimera strains, however, remains largely unknown

    Draft genome sequence of the marine Rhodobacteraceae strain O3.65, cultivated from oil-polluted seawater of the Deepwater Horizon oil spill

    Get PDF
    The marine alphaproteobacterium strain O3.65 was isolated from an enrichment culture of surface seawater contaminated with weathered oil (slicks) from the Deepwater Horizon (DWH) oil spill and belongs to the ubiquitous, diverse and ecological relevant Roseobacter group within the Rhodobacteraceae. Here, we present a preliminary set of physiological features of strain O3.65 and a description and annotation of its draft genome sequence. Based on our data we suggest potential ecological roles of the isolate in the degradation of crude oil within the network of the oil-enriched microbial community. The draft genome comprises 4,852,484 bp with 4,591 protein-coding genes and 63 RNA genes. Strain O3.65 utilizes pentoses, hexoses, disaccharides and amino acids as carbon and energy source and is able to grow on several hydroxylated and substituted aromatic compounds. Based on 16S rRNA gene comparison the closest described and validated strain is Phaeobacter inhibens DSM 17395, however, strain O3.65 is lacking several phenotypic and genomic characteristics specific for the genus Phaeobacter. Phylogenomic analyses based on the whole genome support extensive genetic exchange of strain O3.65 with members of the genus Ruegeria, potentially by using the secretion system type IV. Our physiological observations are consistent with the genomic and phylogenomic analyses and support that strain O3.65 is a novel species of a new genus within the Rhodobacteraceae

    Prokaryotic Diversity and Community Patterns in Antarctic Continental Shelf Sponges

    Get PDF
    Marine sponges (Phylum Porifera) are globally distributed within marine and freshwater ecosystems. In addition, sponges host dense and diverse prokaryotic communities, which are potential sources of novel bioactive metabolites and other complex compounds. Those sponge-derived natural products can span a broad spectrum of bioactivities, from antibacterial and antifungal to antitumor and antiviral compounds. However, most analyses concerning sponge-associated prokaryotes have mainly focused on conveniently accessible relatively shallow sampling locations for sponges. Hence, knowledge of community composition, host-relatedness and biotechnological potential of prokaryotic associations in temperate and cold-water sponges from greater depths (mesophotic to mesopelagic zones) is still scarce. Therefore, we analyzed the prokaryotic community diversity of four phylogenetically divergent sponge taxa from mesophotic to mesopelagic depths of Antarctic shelf at different depths and locations in the region of the South Shetland Islands using 16S rRNA gene amplicon-based sequencing. In addition, we predicted functional profiles applying Tax4Fun from metagenomic 16S rRNA gene data to estimate their biotechnological capability and possible roles as sources of novel bioactive compounds. We found indications that cold and deep-water sponges exhibit host-specific prokaryotic communities, despite different sampling sites and depths. Functional prediction analysis suggests that the associated prokaryotes may enhance the roles of sponges in biodegradation processes of xenobiotics and their involvement in the biosynthesis of secondary metabolites

    Cobaviruses – a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems

    Get PDF
    Bacteriophages are widely considered to influence bacterial communities, however most phages are still unknown or not studied well enough to understand their ecological roles. We have isolated two phages infecting Lentibacter sp. SH36, affiliated with the marine Roseobacter group, and retrieved similar phage genomes from publicly available metagenomics databases. Phylogenetic analysis placed the new phages within the Cobavirus group, in the here newly proposed genus Siovirus and subfamily Riovirinae of the Podoviridae. Gene composition and presence of direct terminal repeats in cultivated cobaviruses point toward a genome replication and packaging strategy similar to the T7 phage. Investigation of the genomes suggests that viral lysis of the cell proceeds via the canonical holin-endolysin pathway. Cobaviral hosts include members of the genera Lentibacter, Sulfitobacter and Celeribacter of the Roseobacter group within the family Rhodobacteraceae (Alphaproteobacteria). Screening more than 5,000 marine metagenomes, we found cobaviruses worldwide from temperate to tropical waters, in the euphotic zone, mainly in bays and estuaries, but also in the open ocean. The presence of cobaviruses in protist metagenomes as well as the phylogenetic neighborhood of cobaviruses in glutaredoxin and ribonucleotide reductase trees suggest that cobaviruses could infect bacteria associated with phototrophic or grazing protists. With this study, we expand the understanding of the phylogeny, classification, genomic organization, biogeography and ecology of this phage group infecting marine Rhodobacteraceae

    Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Roseobacter litoralis </it>OCh149, the type species of the genus, and <it>Roseobacter denitrificans </it>OCh114 were the first described organisms of the <it>Roseobacter </it>clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.</p> <p>Results</p> <p>The genome of <it>R. litoralis </it>OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for <it>R. litoralis</it>, 1122 (24.7%) are not present in the genome of <it>R. denitrificans</it>. Many of the unique genes of <it>R. litoralis </it>are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of <it>R. denitrificans</it>. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of <it>R. litoralis</it>. In contrast to <it>R. denitrificans</it>, the photosynthesis genes of <it>R. litoralis </it>are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the <it>Roseobacter </it>clade revealed several genomic regions that were only conserved in the two <it>Roseobacter </it>species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in <it>R. litoralis </it>differed from the phenotype.</p> <p>Conclusions</p> <p>The genomic differences between the two <it>Roseobacter </it>species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of <it>R. denitrifcans </it>(pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of <it>R. litoralis </it>is probably regulated by nutrient availability.</p

    Diversity and flexibility of the bacterial communities on Cancer pagurus at different temperatures

    No full text
    The brown crab Cancer pagurus is widely distributed in east Atlantic coastal areas and has great ecological and commercial importance, but in many populations a high proportion of crabs with syndromes of shell disease are found. A detailed analysis of the epibiotic bacterial communities associated to the shell of C. pagurus is still missing. Therefore, we analyzed the normal bacterial community associated with C. pagurus and in two crab populations living at different water temperatures. Specimens were collected in the North Sea and 1,500 km north in Norway, and their associated bacterial communities were analyzed under natural and experimentally changed temperature regimes. The identified bacterial communities consisted of a combination of taxa known from other marine crabs and marine surfaces. Some bacterial communities of C. pagurus were similar to those of North American lobsters, which are strongly susceptible towards epizootic shell disease. Many bacterial taxa with potential chitinolytic activity were found such as Aquimarina and Kiloniella, involved in the onset of epizootic shell disease. An exposure for five days of C. pagurus specimens to different temperature regimes showed only slight effects on the diversity of epibiotic bacterial communities. Differences in the abundance of bacterial classes such as the Flavobacteriia, Gammaproteobacteria or Deltaproteobacteria were observed, in combination with a decrease in alpha diversity under cold conditions. This study gives the first overview of normal epibiotic bacterial communities living on the carapace of C. pagurus and provides results concerning the influence of different temperatures on the associated bacterial community composition

    Antibiotic Production by a Roseobacter Clade-Affiliated Species from the German Wadden Sea and Its Antagonistic Effects on Indigenous Isolates

    No full text
    A strain affiliated with the Roseobacter clade and producing a new antibiotic named tropodithietic acid (L. Liang, Ph.D. thesis, University of Göttingen, Göttingen, Germany, 2003) was isolated from the German Wadden Sea. The compound showed strong inhibiting properties with respect to marine bacteria of various taxa and marine algae. Antibiotic production was found to occur during the complete growth phase. Strain mutants without antagonistic properties appeared several times spontaneously

    Distribution and Diversity of Sulfur-Oxidizing Thiomicrospira spp. at a Shallow-Water Hydrothermal Vent in the Aegean Sea (Milos, Greece)

    No full text
    A shallow-water hydrothermal vent system in the Aegean Sea close to the island of Milos (Greece) was chosen to study the diversity and distribution of the chemolithoautotrophic sulfur-oxidizing bacterium Thiomicrospira. Cell numbers in samples from different regions around a solitary vent decreased toward the center of the vent (horizontal distribution), as well as with depth (vertical distribution), corresponding to an increase in temperature (from ca. 25 to 60°C) and a decrease in pH (from ca. pH 7 to 5). Thiomicrospira was one of the most abundant culturable sulfur oxidizers and was even dominant in one region. Phylogenetic analysis of Thiomicrospira spp. present in the highest most-probable-number (MPN) dilutions revealed that most of the obtained sequences grouped in two new closely related clusters within the Thiomicrospira branch. Two different new isolates, i.e., Milos-T1 and Milos-T2, were obtained from high-dilution (10(−5)) enrichments. Phylogenetic analysis indicated that isolate Milos-T1 is related to the recently described Thiomicrospira kuenenii and Hydrogenovibrio marinus, whereas isolate Milos-T2 grouped with the MPN sequences of cluster 2. The predominance of strain Milos-T2 was indicated by its identification in several environmental samples by hybridization analysis of denaturing gradient gel electrophoresis (DGGE) patterns and by sequencing of one of the corresponding bands, i.e., ML-1, from the DGGE gel. The results shown in this paper support earlier indications that Thiomicrospira species are important members of hydrothermal vent communities
    corecore