5,405 research outputs found

    Algorithms for 3D rigidity analysis and a first order percolation transition

    Full text link
    A fast computer algorithm, the pebble game, has been used successfully to study rigidity percolation on 2D elastic networks, as well as on a special class of 3D networks, the bond-bending networks. Application of the pebble game approach to general 3D networks has been hindered by the fact that the underlying mathematical theory is, strictly speaking, invalid in this case. We construct an approximate pebble game algorithm for general 3D networks, as well as a slower but exact algorithm, the relaxation algorithm, that we use for testing the new pebble game. Based on the results of these tests and additional considerations, we argue that in the particular case of randomly diluted central-force networks on BCC and FCC lattices, the pebble game is essentially exact. Using the pebble game, we observe an extremely sharp jump in the largest rigid cluster size in bond-diluted central-force networks in 3D, with the percolating cluster appearing and taking up most of the network after a single bond addition. This strongly suggests a first order rigidity percolation transition, which is in contrast to the second order transitions found previously for the 2D central-force and 3D bond-bending networks. While a first order rigidity transition has been observed for Bethe lattices and networks with ``chemical order'', this is the first time it has been seen for a regular randomly diluted network. In the case of site dilution, the transition is also first order for BCC, but results for FCC suggest a second order transition. Even in bond-diluted lattices, while the transition appears massively first order in the order parameter (the percolating cluster size), it is continuous in the elastic moduli. This, and the apparent non-universality, make this phase transition highly unusual.Comment: 28 pages, 19 figure

    Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing

    Get PDF
    Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy

    Rigidity and intermediate phases in glasses driven by speciation

    Full text link
    The rigid to floppy transitions and the associated intermediate phase in glasses are studied in the case where the local structure is not fully determined from the macroscopic concentration. The approach uses size increasing cluster approximations and constraint counting algorithms. It is shown that the location and the width of the intermediate phase and the corresponding structural, mechanical and energetical properties of the network depend crucially on the way local structures are selected at a given concentration. The broadening of the intermediate phase is obtained for networks combining a large amount of flexible local structural units and a high rate of medium range order.Comment: 4 pages, 4 figure

    Kinetic glass behavior in a diffusive model

    Get PDF
    Three properties of the Edwards-Anderson model with mobile bonds are investigated which are characteristic of kinetic glasses. First is two-time relaxation in aged systems, where a significant difference is observed between spin and bond autocorrelation functions. The spin subsystem does not show two-time behavior, and the relaxation is stretched exponential. The bond subsystem shows two-time behavior, with the first relaxation nearly exponential and the second similar to the spin one. Second is the two-temperature behavior, which can be tuned by bond dilution through the full range reported in the literature. Third is the rigid-to-floppy transition, identified as a function of bond dilution. Simple Glauber Monte Carlo evolution without extraneous constraints reproduces the behavior of classical kinetic simulations, with the bond (spin) degree of freedom corresponding to configurational (orientational) disorder.Comment: 4 pages, 3 figures, minimal corrections, to appear in Phys. Rev. B (RC

    Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe Lattices

    Full text link
    We show that negative of the number of floppy modes behaves as a free energy for both connectivity and rigidity percolation, and we illustrate this result using Bethe lattices. The rigidity transition on Bethe lattices is found to be first order at a bond concentration close to that predicted by Maxwell constraint counting. We calculate the probability of a bond being on the infinite cluster and also on the overconstrained part of the infinite cluster, and show how a specific heat can be defined as the second derivative of the free energy. We demonstrate that the Bethe lattice solution is equivalent to that of the random bond model, where points are joined randomly (with equal probability at all length scales) to have a given coordination, and then subsequently bonds are randomly removed.Comment: RevTeX 11 pages + epsfig embedded figures. Submitted to Phys. Rev.

    Stressed backbone and elasticity of random central-force systems

    Full text link
    We use a new algorithm to find the stress-carrying backbone of ``generic'' site-diluted triangular lattices of up to 10^6 sites. Generic lattices can be made by randomly displacing the sites of a regular lattice. The percolation threshold is Pc=0.6975 +/- 0.0003, the correlation length exponent \nu =1.16 +/- 0.03 and the fractal dimension of the backbone Db=1.78 +/- 0.02. The number of ``critical bonds'' (if you remove them rigidity is lost) on the backbone scales as L^{x}, with x=0.85 +/- 0.05. The Young's modulus is also calculated.Comment: 5 pages, 5 figures, uses epsfi

    Sediment Sorting and Rounding in a Basaltic Glacio-Fluvio-Aeolian Environment: hrisjkull Glacier, Iceland

    Get PDF
    Sediments and sedimentary rocks preserve a rich history of environment and climate. Identifying these signals requires an understanding of the physical and chemical processes that have affected sedimentary deposits [1]. Such processes include sorting and rounding during transport and chemical alteration through weathering and diagenesis. Although these processes have long been studied in quartz-dominated sedimentary systems [2], a lack of studies of basaltic sedimentary systems limits our interpretations of the environment and climate where mafic source rocks dominate, such as on Mars [3,4]. As part of the SAND-E: Semi-Autonomous Navigation for Detrital Environments project [5], which uses robotic operations to examine physical and chemical changes to sediments in basaltic glacio-fluvialaeolian environments, this research studies changes in sorting and rounding of fluvial-aeolian sediments along a glacier-proximal-to-glacier-distal transect in the outwash-plain of the risjkull glacier in SW Iceland (Fig. 1

    Gas permeation through a polymer network

    Full text link
    We study the diffusion of gas molecules through a two-dimensional network of polymers with the help of Monte Carlo simulations. The polymers are modeled as non-interacting random walks on the bonds of a two-dimensional square lattice, while the gas particles occupy the lattice cells. When a particle attempts to jump to a nearest-neighbor empty cell, it has to overcome an energy barrier which is determined by the number of polymer segments on the bond separating the two cells. We investigate the gas current JJ as a function of the mean segment density ρ\rho, the polymer length \ell and the probability qmq^{m} for hopping across mm segments. Whereas JJ decreases monotonically with ρ\rho for fixed \ell, its behavior for fixed ρ\rho and increasing \ell depends strongly on qq. For small, non-zero qq, JJ appears to increase slowly with \ell. In contrast, for q=0q=0, it is dominated by the underlying percolation problem and can be non-monotonic. We provide heuristic arguments to put these interesting phenomena into context.Comment: Dedicated to Lothar Schaefer on the occasion of his 60th birthday. 11 pages, 3 figure
    corecore