5,071 research outputs found
NO sub x deposited in the stratosphere by the space shuttle, phase 1
The results of calculations to determine the amount of NOx deposited in the stratosphere by space shuttle solid rocket motors (SRM) are presented. Flow properties and chemical composition in the exhaust nozzle and plume were analyzed. The nozzle calculations show that about 4.5 lbm/sec of NOx leaves the two SRMs. The total amount of NOx deposited in the stratosphere is related to the amount leaving the nozzle via an overall plume enhancement factor (OPEF), which depends upon the influence of afterburning and shocks in enhancing the exit plane NOx mole fraction. Calculations show that the OPEF is approximately 2, indicating the mass flow of NOx in the plume to be approximately l0 lbm/sec at 30 km altitude with a possible error factor of 4. For a vehicle velocity of 3750 ft/sec, therefore, the NOx deposition rate in the stratosphere is about 2.7 x 10(-3) lbm/ft
NO sub X Deposited in the Stratosphere by the Space Shuttle Solid Rocket Motors
The possible effects of the interaction of the plumes from the two solid rocket motors (SRM) from the space shuttles and mixing of the rocket exhaust products and ambient air in the base recirculation region on the total nitrous oxide deposition rate in the stratosphere were investigated. It was shown that these phenomena will not influence the total NOx deposition rate. It was also shown that uncertainties in the particle size of Al2O3, size distributions and particle/gas drag and heat transfer coefficients will not have a significant effect on the predicted NOx deposition rate. The final results show that the total mass flow of NOx leaving the plume at 30 km altitude is 4000 g./sec with a possible error factor of 3. For a vehicle velocity of 1140 meter/sec this yields an NOx deposition rate of about 3.5 g./meter. The corresponding HCl deposition rate at this altitude is about a factor of 500 greater than this value
Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes
Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface
Algorithms for 3D rigidity analysis and a first order percolation transition
A fast computer algorithm, the pebble game, has been used successfully to
study rigidity percolation on 2D elastic networks, as well as on a special
class of 3D networks, the bond-bending networks. Application of the pebble game
approach to general 3D networks has been hindered by the fact that the
underlying mathematical theory is, strictly speaking, invalid in this case. We
construct an approximate pebble game algorithm for general 3D networks, as well
as a slower but exact algorithm, the relaxation algorithm, that we use for
testing the new pebble game. Based on the results of these tests and additional
considerations, we argue that in the particular case of randomly diluted
central-force networks on BCC and FCC lattices, the pebble game is essentially
exact. Using the pebble game, we observe an extremely sharp jump in the largest
rigid cluster size in bond-diluted central-force networks in 3D, with the
percolating cluster appearing and taking up most of the network after a single
bond addition. This strongly suggests a first order rigidity percolation
transition, which is in contrast to the second order transitions found
previously for the 2D central-force and 3D bond-bending networks. While a first
order rigidity transition has been observed for Bethe lattices and networks
with ``chemical order'', this is the first time it has been seen for a regular
randomly diluted network. In the case of site dilution, the transition is also
first order for BCC, but results for FCC suggest a second order transition.
Even in bond-diluted lattices, while the transition appears massively first
order in the order parameter (the percolating cluster size), it is continuous
in the elastic moduli. This, and the apparent non-universality, make this phase
transition highly unusual.Comment: 28 pages, 19 figure
Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing
Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy
Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe Lattices
We show that negative of the number of floppy modes behaves as a free energy
for both connectivity and rigidity percolation, and we illustrate this result
using Bethe lattices. The rigidity transition on Bethe lattices is found to be
first order at a bond concentration close to that predicted by Maxwell
constraint counting. We calculate the probability of a bond being on the
infinite cluster and also on the overconstrained part of the infinite cluster,
and show how a specific heat can be defined as the second derivative of the
free energy. We demonstrate that the Bethe lattice solution is equivalent to
that of the random bond model, where points are joined randomly (with equal
probability at all length scales) to have a given coordination, and then
subsequently bonds are randomly removed.Comment: RevTeX 11 pages + epsfig embedded figures. Submitted to Phys. Rev.
Recommended from our members
Remarkable dynamics of nanoparticles in the urban atmosphere
Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that the adverse health effects of airborne particles may scale with the airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter particles emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m high. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and indicate a loss of nanoparticles from air aged during less turbulent conditions. These results suggest that nanoparticles are lost by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health
Supervised Learning in Multilayer Spiking Neural Networks
The current article introduces a supervised learning algorithm for multilayer
spiking neural networks. The algorithm presented here overcomes some
limitations of existing learning algorithms as it can be applied to neurons
firing multiple spikes and it can in principle be applied to any linearisable
neuron model. The algorithm is applied successfully to various benchmarks, such
as the XOR problem and the Iris data set, as well as complex classifications
problems. The simulations also show the flexibility of this supervised learning
algorithm which permits different encodings of the spike timing patterns,
including precise spike trains encoding.Comment: 38 pages, 4 figure
The role of science in physical natural hazard assessment : report to the UK Government by the Natural Hazard Working Group
Following the tragic Asian tsunami on 26 December 2004, the Prime Minister asked
the Government’s Chief Scientific Adviser, Sir David King, to convene a group of
experts (the Natural Hazard Working Group) to advise on the mechanisms that could
and should be established for the detection and early warning of global physical
natural hazards.
2. The Group was asked to examine physical hazards which have high global or regional
impact and for which an appropriate early warning system could be put in place. It
was also asked to consider the global natural hazard frameworks currently in place
and under development and their effectiveness in using scientific evidence; to
consider whether there is an existing appropriate international body to pull together
the international science community to advise governments on the systems that need
to be put in place, and to advise on research needed to fill current gaps in knowledge.
The Group was asked to make recommendations on whether a new body was
needed, or whether other arrangements would be more effective
Microstructure and magnetization of doped Y-Ba-Ca-O materials prepared by melt quench and post annealing method
Y-Ba-Cu-O bulk materials prepared using the melt quench and post annealing method were shown to have very high maximum as well as remanent magnetization. Studies were carried out on materials prepared using this method which deviate from the Y:Ba:Cu = 1:2:3 stoichiometry. In one series of materials, only the stoichiometry was changed, in particular by introducing an excess of yttrium. In other cases, dopants including several rare earths were introduced. Effects of variations in composition on microstructure and phase evolution are discussed, as well as effects on the magnetic susceptibility and on the magnetization. The results show that doped materials can exhibit improvements in magnetic properties. Furthermore, the use of dopants sheds light on the role of defect sites in flux pinning
- …